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PREFACE

The gravitational attraction of a celestial body on a particle increases be-
yond all limits whenever the partic¢le approaches the attracting center and finally
collides with it. Consequently the differential equations of motion present singu-
larities at collision; the art of removing such singularities by appropriate trans-
formations of the coordinates and of time is called regularization.

Several methods for regularizing the 2-dimensional motion of a particle, sub-
jected to gravitational forces, are known. In 1895 T.N. Thiele achieved simultane-
ous regularization of two attracting centers and in 1915 G.D. Birkhoff found a sim-
pler method for reaching the same goal. A remarkable regularization of the plane
motion of a particle about a single attracting center was published by T.Levi-Civita
in 1906. He introduced parabolic coordinates in the plane of motion and used the
eccentric anomaly in place of time as the independent variable. This procedure has
the desirable property of transforming the equations of pure Kepler motion into 1in-
ear differential equations, thus permitting easy integration and a simple theory of

perturbations.

Several authors have proposed to take advantage of this fact for establishing
analytical as well as numerical methods in celestial mechanics. In particular, this
was discussed in the spring of 1964 during a symposium at the research institute at
Oberwolfach, Germany [16]. It was generally felt that such a theory would have only
a doubtful value if restricted to 2-dimensional motion. Happily, P. Kustaanheimo
succeeded at the end of the session in constructing a 3-dimensional generalization

of Levi-Civita's transformation by replacing complex variables by spinors. In the
paper [3] we reformulated this in terms of matrices, discussed the analytical and
geometric properties of the transformation and outiined the perturbation theory.
This opened the way for further generalizations, for example the construction of a

3-dimensional transformation of Birkhoff's type [17].

Other 3-dimensional regularizations were known before, but as far as we know
they have not the property of generating linear differentlal equations. We mention
in this connection only the ingenious work of K.F. Sundman who established in 1913
his famous result on forever convergent expansions in the problem of the three

bodies.

In 1965 the National Aeronautics and Space Administration of the U.S.A. sug-

gested that we study the problem of regularization with the 3-dimensional case as
the principal area of research, furnish additional knowledge of possible types of

trajectories and improve methods for numerical integration of trajectories.

This research was organized as a cooperative project of NASA and the Swiss
Federal Institute of Technology. It is my pleasant duty to express our thanks to

both organizations and to IBM for sponsoring thls work. We are also indebted to
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NASA's representatives Dr. E.D. Geissler, Dr. H.A. Sperling and Commodore C.

Dearman for their interest, comments and helpful assistance.

It should be mentioned in this connection that this report is intimately con-
nected with research work done by NASA scientists. For instance R.A. Broucke [18]
of the Jet Propulsion Laboratory has developed a perturbation theory of the oscu-
lating orbit based on [3], which is somewhat different from the theory contained in
this report (cf. section 1.4); R.F. Arenstorf [19] and H.A. Sperling [20] of
Marshall Space Flight Center have published remarkable contributions to the theory

and application of regularization.

NASA's sclentific support has created wider interest in celestial mechanics at

our university and, in particular, Mr. P. Sturzenegger and Mr. B. Stanek have facil-

itated our work by investigating some special problems and by carrying out computa-
tions. We are very obliged to them and also to Mrs., S. Eisner who, with everlasting
energy, took care of all the little details Involved in printing and publishing

this report.

Finally we want to thank Mr. A, Schal, director of our computing center; he
was always ready to help us and to put our programs on the Control Data 1604-A

computer with high priority.

Zurich, September 1966. E. Stiefel

How to read this report

1. A reader only interested in perturbations and practical computatlions will skip
the more theoretical investigations on simultaneous regularization of two at-

tracting centers (sections 1.1.2, 1.2.2 and chapter 3).
2. References to literature are in square brackets.

3. We have the custom to list on the left-hand border of an equation the numbers

of the previous formulae needed for proving that equation. For instance

2

(1,98) (a + b)2 = a2 + 2ab + b2 (1,99)

means more explicitly: "from formula (1,98) it follows that (a + b)2 =

a° + 2ab + b° and this result is the new formula (1,99) ".




-V -

CONTENT S

Chapter 1

1-5

1.6

1-7

1.8

1. PRINCIPLES OF REGULARIZATION

by E. Stiefel

Motion in a plane
1.1.1 Transformation of Levi-Civita
1.1.2 Birkhoff's Transformation
Motion in 3-dimensional space
1.2.1 The KS-Transformation
First procedure
1.2.2 The B3—Transformation
Kepler motion
1.3.1 The unperturbed motion

1.3.2 Variation of the elements under the influence of perturbing
forces

Second procedure
1.3.3 Perturbations of the elements
Companion procedure
1.3.4 Ejection orbits
The osculating Kepler motion
Third procedure
Companion procedure
Analytical theory of perturbations
1.5.1 PFirst-order perturbations
Fourth procedure
1.5.2 Three-body problem
Secular perturbations
1.6.1 Conservative perturbing potential
1.6.2 Secular perturbations
1.6.3 An example
1.6.4 An ejection orbit
On stability and convergence
1.7.1 Stabiiity of pure Kepler motion
1.7.2 Convergence of Fourler expansions
Conclusions
1.8.1 General theoretical aspects
1.8.2 General perturbations (Double Fourier expansion)

1.8.3 Numerical aspects

1 - 45

10
10
12
13
15
15

17
18
19
19
20
24
22
23
24
24
25
26
28
29
30
32
35
36
37
41
43
43
44
44



- VI -

Chapter 2 46 - 87
2. COMPUTATIONAL PROGRAMS FOR SPECIAL AND GENERAL PERTURBATIONS
WITH REGULARIZED VARIABLES
by M. ROssler
2.1 The program NUMPER ("numerical perturbations") 46
2.1.1 List of symbols 46
2.1.2 Underlying formulae 48
2.1.3 Input and output 51
2.1.4 Description of the program NUMPER 53
2.1.5 First numerical example: Perturbatlons of a highly eccentric
satellite orbit by the moon 54
2.1.6 Comparison with the classical method of Encke 57
2.2 The program ANPER ("analytical perturbations") 59
2.2.1 The independent variables 59
2.2.2 The elements 60
2.2.3 Rules for the user 61
2.2.4 Remarks 63
2.2.5 Fourth numerical example: Perturbations computed by four
different methods 63
2.2.6 PFifth numerical example: Convergence of the Fourier expansion in
the case of an ejection orbit 67
2.2.7 Sixth numerical example: Convergence of the Fourier expansion 1n
the case of a circular orbit 69
2.2.8 First-order perturbations of the orbit of the planetoid Vesta 70
Appendix 2.1 Program NUMPER 71
Appendix 2.2 Output of program NUMPER. First example 76
Appendix 2.3 Program ANPER 78
Appendix 2.4 Output of program ANPER. Fourth example 85
Chapter 3 88 - 115
3. THE RESTRICTED ELLIPTIC THREE - BODY PROBLEM
by J. Waldvogel
3.1 Theory 88
3.1.1 Equations of motion 88
3.1.2 Regularization 93
Fifth procedure 100
3.1.3 Remarks 103

Modifications of the fifth procedure for the case of
an ejection

105



- VII -

3.2 Examples
3.2.1 Transfer of a vehicle from earth to moon

3.2.2 A 3-dimensional periodic orbit in the restricted circular
three-body problem

3.2.3 Conclusions

Chapter 4

4. EXPERIMENTS CONCERNING NUMERICAL ERRORS

by C.A. Burdet

4.1 Configuration of the reference orbit
4.2 Numerical integration of the equation of motion
A) Classical equations of Kepler motion
B) Regularized equations of motion
4.3 Description and results of the numerical experiments
A) Long term experiment
B) Short term experiment

4.4 Conclusions

References

116 -

107
108

112
115

124

116
116
116
117
119
119
119
122

123



w

-4 -

1. PRINCIPLES OF REGULARIZATION

by E. Stiefel

The motion of heavenly bodies may be predicted using the theory of classical
celestial mechanics. This theory leads to a set of differential equations, whose
solution provides the equation of the respective orbits of the various bodies. The
standard classical methods of solution of these equations is very successful if the
various bodies considered remain well apart from each other as they move in their
orbits., However these methods become cumbersome and inaccurate if the bodles are
involved in a near-collision, and break down alltogether if an actual collision is
involved. A very important practical problem for instance concerns the motion of a
space vehicle as it moves from the earth to the moon. This is in a state of near-
collision both at the beginning and at the end of 1ts orbit.

The intention of this report is to introduce and investigate numerical as well
as analytical methods, which deal with this problem taking into account this some-
what shifted point of view. Such methods should be able to compute an orbit during
and beyond collision, and transformed into perturbation methods they should con-
verge rapidly also for orbits of arbitrary high eccentricity. This implies the
introduction of regularized coordinates and a regularizing time. Furthermore the
classical orbital elements (inclination, longitude of node, pericenter, etc.) are
not unambiguously defined as the eccentricity of the orbit approaches 7 (the
major axis a@ remaining bounded). For this reason, and in order to provide a con-

venient general theory, we introduce also regularized elements in this paper.

We emphasize the practical computational aspects and avoid lengthy theories
by using sources already available in the literature. The report should be readable

however without consulting such sources too much.

At the end of the paper the general properties of regularized methods are
listed. Their advantages and disadvantages in the light of our experience, are

discussed.

1.1 Motion in a plane

A particle of mass 772 is subjected to the gravitational force of a central
body M 1located at the origin of a X, X,-plane. (Fig. 1.1). A possible path is a
Kepler ellipse focused at the origin; if the eccentricity of this ellipse is close
to 7/ , the orbit is very close to a straight line segment. In the limiting case,
the orbit is a straight line segment, the particle moving forwards and backwards
on this line, its position vector making a sharp bend of angle 22 at the origin.

In order to remove this singular behaviour, generalized coordinates ¢, &, are
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introduced by mapping the physical X-plane ( X = X,+ ¢Xx; ) onto a parametric
w-plane (U= w, + du; ) in such a way that the image of the particle moves on a
straight line always in the same direction going beyond the origin after collision
and making no turns at collision. Thus the angle 22 in the physical plane should
become only 2 1in the parametric plane. In general regularizing transformations
must have the basic property that angles at attracting centers are halved.

X2 u2

® O]

= X4 — Uy
Fig. 1.1. Regularizing Transformation.

The kinetic energy 7 of the particle is a quadratic form in the general-
ized velocities d/- with coefficients depending on the position of the image
point. If our mapping X= X(«) is conformal at points not occupied by attracting
matter, this form is reduced to a sum of squares, thus ensuring that each
Lagranglan equation contains only one acceleration u/ We take advantage of this
fact by restricting ourselves to conformal transformations. The complex variable X
1s then an analytical function x(«) of the complex argument «. We use the
Cauchy-Riemann equations

Ox1 _ Ixa Pxy _ _ PXxa (1,1)
9“1 QUL b ga‘ = 9“, b

and we Introduce the functional determinant
D o x Il E 27(5'/1 (1 2)
= —_— == - , ry
du 7 oY,

where ¢ 1is either /7 or 2, Denoting differentiation with respect to the time r
by a dot, the velocity ¢ of the particle in the physical plane is given by

2

.2 dx 1% - 1% .2
Yy - IXI = d—(l.l I(Al = [0~ Z__ w, (1,3)
and its kinetic energy by

7_-3’2/‘-‘ iDZu'/-L. (1,4)

Iy
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(The mass 7 of the particle is assumed to be =7 3 In our subsequent working the
magnitude of this mass 1s irrelevant because i1t cancels out of the equations of
motion). The forces acting on the particle are supposed to have a potential that
splits up into a conservative potential ¢ (X;) (eventually singular at centers of
attraction) and a perturbing potential l/(xg,é/ regular at those centers and
eventually depending explicitly on time. The Lagrangian equations of motion with
respect to the generalized coordinates &; are then

d M ; 20 .2 2 _
?.22(0“/)‘23—‘9.2«4 +-979,(&J+V/— o, (1,5)

where the potentials Zl, V are written as functions of ¢, and f pefore differ-
entiation. If we go from the parametric plane to the physical plane by our trans-
formation, we have in general conservation of angles, excepting that at the image
points of attracting centers angles are doubled. Such points are unconformal and
the coefficient of the highest derivative in (1,5) (that is the determinant O )
vanishes there, thus producing a singularity of the differential equation. In order
to avold this phenomenon a regularizing time - also called fictitious time § = is

introduced by the relations

s 4 - L &£ -
dt "0/ Zt-. D Zs 2 z /D Ls . (136)

We denote differentiation with respect to S by an accent and obtain the follow-
ing modified forms of (1,5)(1,3):

v
where zfz is given by
vr= L w7, (1,8)
0 /
On the right-hand side of (4,7) appear the perturbing forces
--2Y
% PPy

in the parametric plane. They may be computed from the perturbing forces P in
the physical plane by the formulae

_ _ 2V . _2V _ _ oV Ix:
p&’ - 9K" 2 7/' 9‘{/ % 2/“‘ a“‘/' »
X,
P = 22 p (1,9)
% T oY Vat
(1,7) becomes
s_ 2t 20 24 . 1,10
u/' 2 au/ * 061{/ 0?/ . ( )

This equation (1,10), derived above for the case in which the perturbing forces can
be derived from a potential, is also valid if this is not possible, so long as the
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@, are computed using (1,9). The last step of regularization is the elimination of
»? by the vis viva integral

'z"+ U = A+ W. (1,11)

A is the constant of energy and

w =/Z/o‘~dx‘~ = /2'_, g, du, (1,12)
the work done by the perturbing forces. The result 1s
. 2 - 20
&y "‘a—uj,/ﬁ(l(-h)] Oq; + EPH w. (1,13)

This system of differential equations is perfectly regular if the pole of U at an
attracting center is compensated by an appropriate zero of D.

A few remarks concerning initial conditions are in order. We have

. dxs - gx, . . 9)(‘ . 9)(1 .
X, = u, + u X, = u, + 71
2« Tt Qu T2 2 du, 1 P« *

By solving for ¢, dl and taking into account (1,1) the formulae

. t 7 dx, - %2 t s Ox, dXxa -
=L 22 x = L/ 2% 22 x
“=D du, T ay, ‘) ’ “=72 D, X * 24, z}

are obtained; thus from (1,6)

- 2X;
V" oy

This enables us to compute at instant lems= O the velocities u; in the para-
metric plane from the given velocities ”24' in the physical plane. Denoting values
at this instant Z=s= © by the subscript o, we have also

2 S
A2 ll,, W=/q au . (1,15)

Sometimes 1t 1is pratical to introduce a scaling factor )\(uj} in the
definition of the fictitious time:

dt = AD ds . (1,16)

This slightly more general regularization leads to the following basiec and final
set of formulae.
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Notations

physical space

parametric space

coordinates X;
velocity v
time ¢, -Z‘?tQ = (7 s _%Q =
conservative potential Z(()(‘-) a(u./)
perturbing forces P
work 174 =/Z/b‘» olx; |24 =/Z g, alu/-
Transformations
coordinates x; = X (u;), O b (9’(4 (for any ¢ ) (1,17)
/ 79 90‘/
time dt = AND s (1,18)
‘. = ._/__. ax" 4 i = 9)('
velocity %= 35 %5 7a « , « ,\% Sa (1,19)
2 7 ,2
= 1,20
v = w5 LY (1,20)
PLY
perturbing force ?j = Z 9({/_ P (1,21)
(¢)
Equations of motion
1 d i) _ gt 90 U _
- (A) 55 %%, % (1,22)
or
1d 14,2 /p 24 23
Aals(%)+9 Jo(U-k)] = 0%*3@- (1,23)
01.
A= 2+ U, (1,24)

(v, U, = initial velocity and potential).
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1.1.1 Transformation of Levi-Civita. In the sequel of the paper we consider only

gravitational forces described by Newton's law of attraction. We begin with the
simplest case of a single attracting center located at the origin of physical X-
plane; if the classical equations of motion are used, the attractive force becomes
infinite, if the particle is at the origin. Levi-Civita [1] has developed in a
famous paper a method for removing this singularity by introducing the parametric
w -plane and using the simplest mapping of the w«w-plane onto the x -plane satisfy-
ing the requirement to double angles at the origin and be conformal elsewhere. This
transformation is (Fig. 1.1)

X= u ; X, = w -« X, = 2w, U, . (1,25)

7 z 7
The distance 7/~ of the particle from the origin of the physical plane is
2
roe=odx) o= ful = S, (1,26)

and from (1,2) we obtain

With the choice

v, 2
. B - . = . 2w,
% u +9uj(r5(j Z/Lu/ rg, +2u, W.
For the Newtonian gravitation the product (rU) is a constant; thus the equations
are reduced to

L4

4u/ —2/Laj - rg + 2 u; w, (1,27)

and in particular the Kepler motion about the attracting center is given by the
differential equations

bul - 2hu; = o (1,28)

because no perturbing forces are acting. These equations are not only regular at

the origin but also linear with constant coefficlents. This brings out the deeper

reason for the fact, that regularization is not only useful for collision orbits

but also for orbits of modest eccentricity. If A 1is negative the motion (1,28) is

a harmonic oscillation. The orbit of the image-point in the w«w-plane 1s an ellipse
centered at the origin and mapped onto an ellipse of the physical plane focused at
the central body.

1.1.2 Birkhoff's Transformation. For the transfer orbit of a vehlcle from earth to
moon a simultaneous regularization at both attracting centers 1s needed. This was
performed by Birkhoff [2]. In order to facilitate the generallzation to 3-dimen-
sional motion, we give a somewhat modified account of his lines of approach to the
problem. The orbit of the moon about the earth is assumed to be a perfect circle.
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A rotating coordinate system Yr, Y, 1s introduced (Fig. 1.2) in such a way that
earth and moon occupy fixed places on the Yy -axls, the origin being theilr center
of gravity. The problem of computing the orbit of a particle of negligible mass in
this force field is known as the restricted circular problem. We are still

restricted of course to planar orbits in the y—pl.ane. By convenient choice of the
units of mass, time and distance we may assume that

1. The total mass of earth and moon = 1.
2. The distance of the moon from the earth = 7.
3. The gravitational constant = 7.

Denoting the mass of the moon by # we find this body at (7—-((4) 0 ) and the earth
of mass (/—',u-) at (-(u,o ). The angular velocity of the rotating system 1s = 7
as follows from the third law of Kepler. Finally we denote by ry, 72 the distances
of the moving particle from the earth and the moon respectively.

by2

Fig. 1.2. Birkhoff's Transformation.

In the problem at hand the conservative potential & is composed of the two
gravitational potentials and the potential of the centrifugal force:

- - I
u g

e x)
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or up to a non-essential additive constant
- 1 1,2 AN R
the perturbing force is the Coriolls force

Prm 2%, p=—2Y, - (1,30)

The key for achieving the desired regularization is the remark that Levi-Civita's

transformation (section 1.1.1) has not only regularizing properties at the origin
but also at infinity. It is therefore sufficlent to throw the earth into the origin

and the moon into infinity by appropriate and elementary conformal transformations.
The following chain of mappings is proposed. (The v -plane {listed first in the
table) is the parametric plane corresponding to the regularized equations of mo=-
tion, the y-plane {1isted at the foot of the table) is the physical plane of

Fig. 1.2).

space coordi- abscissa abscissa Transformation
nates of earth of moon
7 v -1 b3
Vo= 2y
2 1 -1 7
Inversion
3 w; 0 oo (1 ,31)
Levi-Civita (KS)
4 X; o] oy
Inversion
5 4 -1 7
Ye = 2+ ($-#)
6 Y: Na 1-p

By inversion is understood a transformation by reciprocal radii. The center of
inversion is at the point ( 7, ©) and the radius of inversion 1s vz . (This state-
ment 1s valid for the transformation 2—3 as well as for 4 —= 5 ; Fig. 1.2
illustrates the mapping 2 —3 ). The transformations /—2 and S5 — 6 are
only unimportant adjustments; the essential transformations 2 —5 are conven-
iently expressed in complex notation by

u-1 = =% X = ut Y-1 = Z

=3 ?

V-1 ’ x-1 7

where V 1is the complex conjugate of 174 (V= V,+¢ V,). These give for trans-
formations 2—35,

Y = £(v+-L) (1,32)
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and so, the complete transformation 7 — 6 is

y- Yoo = (Vrf) 2 (),

17 1
y=35(v+g)+ (3-¢). (1,33)
In real notation this may be written
7 é’%
= - + = v, *+
o= (f-p) * 7(v V2+Vz/7
. (1,34)
_ 1(\/ — 2
D2 z V,z-.«-V,_z
The distances /7, /3 have the following expressions:
| lv 2"
L , ‘ 1 V + 3
r, = + = Vot = F (1,35)
7 I.y ["‘l 2 | by 2 IVI ) ’
2
7 7 A |V—£|
= _ = £ S - L Y=zl 1,36)
2 |y+ﬂ 7l zZ |\V* oy /l z M . (1,36)

The absolute value in the numerator of (1,35) is the distance of the image of the
particle in the parametric plane from the image of the earth. For establishing the
equations of motion the scheme (1,17) - (1,24) is applied.

= 1 lv-4llv+2] rn

&
“  vl* S TE

dv

D =

K7
0= —25 (1,37)
+

For the computation of the Coriolis forces ?y in the parametric space the abbre-

viations
5, = LA (1,38)
h ‘9\@

are introduced. With A= 7 we have from (1,19)(1,21)(1,30)
- LT b
-yi 0 L'kvk’

= Zbype = 2065~ hi)

- 2 f - / 1,3

%04 (b; 6o = 65, 6,) v - (1,39)

Because the Coriolis forces do no work, the equations (1,23) of motion are finally
v, 2 - = b.b,, -6, b6 . 1,40

vt 95.[0[&( L)/ 2%_(,/ 20 52/ ,A/lz (1,40)

Here the expression
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1 3 3
ou - ;TF[-(f-/x}(’i-*;f/;f})“,“(’}*z!r;Q)j (1,41)
r tVa
has no longer singularities at the attracting centers; thus equations (1,40) are
perfectly regular. From (1,20)(1,11) we obtaln the energy relation

h=gs 2oyt e U (1,42)

(observe W=0) and after integration of the differential equations (1,40) the
physical time ¢ 1is given by (1,18)

¢ - /z) oLs . (1,43)

By Birkhoff's transformation a new singularity is produced at the origin of the
parametric v-plane. This can be seen from (1,41). This event does not generate a
serious danger because this origin corresponds to the point at infinity of the
physical plane. T.N.Thiele removed also this singularity by substituting for V in

(1,32) an exponential not attaining the value O, His transformation is

V- e‘z, Y = cos =z , _)/-/z'—(u/+2—{a:sz-

It is worthy of note that the right-hand sides of (1,40) can be simplified with
the help of the Cauchy-Riemann equations for the analytical function y(v) . These
expressions are reduced for /= 7, 2 to (20 v’ ) and (-2 0 v,”) respectively. But
we do not take advantage of this fact because it is no longer true for the
3-dimensional motion of a particle.

1.2 Motion in 3-dimensional space

In this section we consider the motion of a particle moving in the 3-dimen-
sional physical space referred to rectangular coordinates X,, X,, Xs. It turns out
that a generalization of the methods of section 1.1 to 3-dimensional motion 1s im-
possible 1if only three generalized coordinates &, %, «; are introduced. But al-
most all such methods have their adequate generalization if we are allowed to fix
the position of our particle by 4 parameters «&,, 4., Y4, «, related by a non-

holonomic condition. Thus the parametric space will be a 4-dimensional space.

1.2.1  The KS-Transformation. This is the generalization of Levi-Civita's trans-
formation described in section 41.1.1. The 4 parameters «,
following definitions:

are introduced by the

2 2 2 2
Xy = U, — Uy — Uy + U,

X2 = 2(d, uy - uyw,) (1,44)
x_g - Z(Uy aj'/' U, L(*)

For uy= 4, = O this coincides indeed with (1,25). As in (1,26) the distance »
of the particle from the origin of the physical space is glven by
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r=Zou, (1,45)

where summation goes from 7 to 4. This follows from (1,44) by explicit verifica-
tion. Also we have

rex, o= 2(ulral) , rex= 20w+ ug) . (1,46)

This furnishes the following two alternatives for the computation of the a/- from
the X; 3

z 2 f z 2 7/
U, +uy = 5(r+x,) w, + Uy = 5(r-x,) ,
X2 Uq + X3 U, X Uy + X3 U
Y, = 2103 % = X2t 73 U
* r+ox, &y ~_x, , o (1,47)
— Uy —
u, = X3 Uy — Xz Uy u¢=X’ 2 — X2 Us ]
rm+ X4 ’ r—x,

The second and third line are obtained by solving the second and third equation
(1,44) with respect to U;, Uy or with respect to ¢,, ¢,. The <« are of course
only determined after choice of one among them, but this is irrelevant for our
purposes.

The transformation (1,44) has been studied in the article [3] and many con-
formal properties have been recorded. It follows from these considerations that the
basic formulae (1,17) -~ (1,24) are applicable with the only modification that

summation runs from / to 3 in the physical space and from / to 4 in the para-

metric space. With A= 4.1 we obtain immediately

.2
(1,17) 0= Z‘(&/ = 4(u,lfuzl+a;+u:)=4r, 20 8u
ZCEY

(1,18) dt - rds, (1,472)
(1,19) Y, -2-':(«,)%,+al)i,_+u,)23) ’
Uy = L(-ty kg + U Ryt Uy Xs)
Us = %(’ U Xg— Uy X, + "'3) , (1,48)

U = £ wy Ry - Uy Ry U Rs)

(1,20) o 27 4, (1,49)
(1,21) 9 = 2( Up+ Lprt Ups)

9, = 2("“2 Prt U P2 U#/OJ) )
q_s "2-(““pr_ Ug P2 * aiPJ) ’
A =2( Uyp,~Usp? U p3) -

Let us assume now that our particle is subjected to the gravitational attraction

(1,50)

of a body located at the origin and to some unspecified perturbing forces. Thus the
potential is



Z[-—_/\J ) (1,51)

where /M is the product of the gravitational constant with the mass of the central
body. Our automatic formula generator goes on as follows:

(1,22) bu’ +[%—?—’— zfyaj -rg (1,52)
(1,23) buf ~2hu = rg +2Wu , (1,53)
S S
(1,24) A = f‘1+ U = 5 - 7 , W= /7 g du . (1,54)
The set (1,48) of equations implies
Upu — Ugu] + U, uf - = O . (1,55)

This is the non-holonomic condition mentioned at the beginning of this section.
Equation (1,49) transforms the vis viva integral (1,11) into

ZZ u/fl = Merlh+s W). (1,56)

This set of formulae is, in itself, a collection of guiding rules for the numerical
computation of an orbit. Let us call it

First procedure
(Perturbed motion of a particle about a central body; computation of the parameters
&, as functions of the fictitious time §.)

Initial conditions. Compute initial position and velocity of the particle from
(1,47) and (1,48), also A from (1,54). W= 0.

Differential equations. Integrate the system of 70 simultaneous equations of
first order

4w’ -2~y = /-7/-+2Wu/ , JS=12,3,4%,
” (1,57)

’ W,_Z,?/-uj'/.

At each step -, Xx;, ¢, are computed from (1,45)(1,44)(1,50), the perturbing
forces p; 1in the physical space being known from other sources. (1,55) and (1,56)
are used as checks.

/-s

As far as the author knows, this simple procedure has never been used for ex-
plicit numerical computations. It will be modified and refined in sections 1.3 and
1.4 for elliptic initial conditions but it is possibly successful for hyperbolic,

parabolic or near-parabolic initial conditions. In such a case we advocate to

compute the Eerturbationse)

Aa/-%'_a/'/\'; dr = r - r,

s AL - -, (1,58)

1) If no collision occurs, the perturbing forces must not remain finite at the ori-
gin as was assumed in section 1.1.

2) Throughout the paper the subscript A indicates values corresponding to the un-
perturbed Kepler motion.
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of the coordinates of distance and of time. From (1,45) it follows
Ar = Z;(;_uﬂr - Aa/./Au/- s (1,59)
thus (1,57) can be transformed into
4—(414(/-///— 2hdu; = (ry+ ar) 9 *+ ZW(a/.K +Aa/j , (1,60)
(at)’ = ar W=/ 7//&(/,: + (Aw)) , (1,61)

where A, is given by (4,59). This arrangement of the rules for computation avoids
the loss of significant figures by subtraction of almost equal numerical values.
The computation of the unperturbed Kepler orbit is described by equations (1,76)
(1,87)(1,88) in section 1.3.

The equations (1,52) of motion have not been taken into account in our first
procedure. They have the advantage that they avoid the computation of the work W
but they suffer from the fact that both quantities ZM//‘ and Zf‘ are infinite at
collision. Nevertheless these equations are very useful for the discussion of the

osculating Kepler orbit in section 1.4.

1.2.2 The B,-Transformation. The generalization of Birkhoff's transformation

(section 1.1.2) to 3-dimensional motion is immediate. The y—coordinate system is
supplemented by a Y, -axis perpendicular to the plane of Fig. 1.2 and the particle
is allowed to move in space, /3, /2 denoting as before 1ts distances to the
attracting centers (earth and moon). The potential (1,29) is modified by a term

containing Y; and becomes

2

U= --p)(L+ £57) ~p(5+ 357+ F0. (1,62)

Again 4 generalized coordinates \5 are introduced for describing the motion of
the particle and the chain (1,31) of transformations is applied with the only
modification that the mapping of space 3 onto space 4 is performed by the KS-trans-
formation just discussed. Hence the spaces 1 through 3 have four dimensions and the
remaining spaces 4 through 6 only three. The inversion 2 —~3 for instance is

given by the formulae

2(V;-7) 2V
-7 = s 7 s = - - . b=2,3,% (1,63)
TR T e,

The composition of the 5 transformations of table (1,31) is a little tedious

because complex notation is no longer available. The final result is

/ V(VL"E’/
L _ A 1=
Y= (z /")+2[V1+ Vie v,or vt ’

3
2 7
_ 3/ v + v(y'-£)- ‘G\fg_] (1,64)
Y2 2 2 Ve yie e ’
E
Yy = l[v _,_‘6("4'&'{)*"&"9/
3 z 3 Vfl"‘v:"' VJL
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For yy= y = (o) this reduces to the previous transformation (1,34). Because in-
versions are conformal mappings in 4-dimensional as well as in 3-dimensional
spaces, the preseriptions (1,17) - (1,24) for establishing the equations of motion
still hold true; one obtains

2y %
(1,17) D=/ ) - 8n (1,65)
TG i + v+l
where

s L 2
7 (v+d) +0 v+ v I I A A
z

_ 1

= 1 1 ’ - Z
E N kN IR T L N
Vi + Vet Vv, + v+ v,

By choosing A= 7 , we have for the fictitious time S

/;-:

(1:18) dt = D os . (1166)

The transportation of the Corlolis forces into the parametric space 2y leads to

exactly the same results as before, namely

2 s - LA
¢ = D £ (51/ 62& - Azjéﬂ(/ i 54'& 7 XV (1,67)
() «
where 4 is now running from 7/ to 4 and the equations of motion (1,23) are
literally the same as in (1,40), that is

\9.'+9—@[0(Z(’/1)j=Z-(Za)-_“f/bza—ézjéra)‘ﬁ/: /=02,34, (1,68)

h o= L .2 (1,6
%) v + U . ,69)
The initial position of the particle in the parametric space can be computed by
making use of table (1,31) in the reverse order, using the formulae (1,47) for the
inverse KS-transformation. Initial velocities are taken from (4,19)

; .
Vk - Z 5‘4 X‘- . (1:70)
()

After integration of the equations (1,68) the physical time 1s computed from
t= /0 ds . (1,71)

The foregoing brief description of the B.-transformation is adequate for our

3
purposes. A thorough analysis with detailed proofs is given in [4]. Further infor-
mation is contained in chapter 3 of this report (Waldvogel); there the Bj-transfor-
mation is established for the more general elliptic restricted problem, where the

moon is allowed to move on an elliptic Kepler orbit.
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1.3 Xepler motion

1.3.1 The unperturbed motion of a particle about a central body is governed by the
equations (1,53)(1,54)

2
' ”" .
“/"‘/Z%"/,:/“/ =0,  Js=1234%, (1,72)

where /3, ¥, are respectively the initial distance and the velocity in the physi-
cal space. If the coefficient of &, 1in (1,72) is positive, we may introduce a

frequency w by

2 ard y2
2n A (1,73)
and write our equations
» z
U + W u =0 . (1,74)

Thus the motion of the image of the particle in the parametric space is a harmonic
oscillation and its orbit is an ellipse centered at the origin. This orbit is
mapped by the KS-transformation (1,44) onto a Kepler ellipse in the physical space

and if the image makes one revolution in the u-space, the particle itself makes
two in the physical space. Its velocity # is determined by (1,49)

2 & % 2
v - 72 “wo, re-7 u (1,75)
/", given by (1,45), is the distance of the particle from the origin of the physi-
cal space during its flight. By integration of the equations of motion we obtain

a.

/ s i
Y=ot Cos s + f shows ,  uf - w (-2 simws + [3; cos ws) . (1,76)

S 1s the fictitious time satisfying &f = rd&s and oc/-,/ﬂj are constants which
are computed from the initial conditions as follows

% = (4), , f= wL(a/-’/o . (1,77)

Obviously the g parameters K/‘,ﬂ,- characterize the motion of the particle; we
call them the regularized elements of the orbit. From (1,55) i1t follows at instant
S= 0

“¢ﬁf - “Jﬂz + “zﬁ; - ‘x’f/ggg = O . (1,78)

Furthermore (1,56) can be written for s= O

22 = M rh = MR (F -2 = -2,

where (1,54) and (1,73) are used. Thus it follows from (1,75) and (1,77)

2a* () f3) = M. (1,79)
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The 9 parameters a%,cs-,/% are thus related by the two identities (1,78)(1,79).
This remark reduces the number of independent parameters to 7 exceeding by one the
classical number. This stems from the fact that the mapping of an orbit from physi-
cal into parametric space 1s not unique.

We shall next compute distance /~ and time !l 1in the physical space.

(1,75)(1,76) r = (Z«;/ cos’wS +/Z/}-75/nlw5 + 2 (Z_ayﬁjjs"n wSs cas WS,
e d Z o) + Feos 2005 UG- + m 205 Zosfy (1,80
t = frds = %Z(oy"+ﬂ,-'j +4—/; sin2ws 2 (5"~ f57) +2—£)- (1-cos 203) 2048 . (1,81)

These formulae btogether with (4,76) and (1,44) determine a given Kepler motion
explicitliy.

We now proceed to establish some connections with the classical theory and its
notations. The time /7 of revolution in the physical space is attained for
WS = x, thus

(LENT T = g S e pY) - AL (1,82)

If a denotes the semi-major axis of the Kepler ellipse 1n the physical space, we
have from Kepler's third law

2x Cl%&
A

and confrontation with (1,82) furnishes

7 -

- M ,83
a=- 5 (1,83)

By inserting this into (1,79) we obtain the important result
a=47 (+4") . (1,84)

The mean angular veloclty f4 of the particle is

(1,82) pom ZE . R0 (1,85)
2 :
2 (+4’)
By inserting the value (1,73) of @ into (1,83), we obtain a well-known

relation of classical celestial mechanics,

z
.é,.;_z-_ /\”}/ , (1,86)

which holds true at any point of the Kepler orbit.

These formulae are a little simplified if the initial position of the particle
is the pericenter of the Kepler orbit. Denoting by €, £ eccentriclty and eccentric

anomaly comparison of (1,80) with the classical formula

r = a(f—ecosE)
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leads to the result

/ L_ gt
€ =-3z Z(%-ﬁ/) , £ =2ws, Z,OCJ/J_, =0 . (1,87)

It still remains to consider the cases where the coefficient of &, 1in (1,72)
is negative or vanishing. If the former event occurs, we have equations of the type

2 wS -S
Wuy=0, w=ox. e +pfe ,

”
u; <,

7/
and the orbit is hyperbolic. A vanishing coefficient leads to

4
Ur=0, w=ous+f.

This orbit is a straight line in the parametric space and a parabola in the physi-

cal space.

1.3.2 Variation of the elements under the influence of perturbing forces. Return-

ing to the general elliptic case we may write equations (1,53)(1,54)

‘—‘; o+ w"u/ = 6 , (1,88)
.M %t !
Smsm B, H=flrg 2 W) . (1,89)

This system is integrated by the familiar method of variation of constants. We put

Uy = o (3) cos cws + f3:(9) sm ws ;5.’- @ (~o(s) sim ws+ f3(s) cos ws) , (1,90)

thus introducing varying elements o (s), /@;(S) . They must satisfy the differen-
tial equations

Vd
o/ =-w46~ s ws /3, = U’/‘; cos wsS . (1,91)

In order to rewrite the energy equation (1,56), we use (1,54) and (1,45) namely
2
% ™M 3
howm B -—-2w,
2 ra

r= J (ot cos ws + f; sin ws)l :

or

(1,80) r o= Z'Z‘(ocjl-f/?jl) +Z'cos ZwSZ‘(oyL—ﬁJU + s ZNSZ,“/'ﬁ/ ,  (1,92)

Z@(z= e J. (-, s ws + 3, cos ws)”
thus
(1,56) Zw"z_(—ocy- st ws + f3; cos ws)™
= N - ZWLZ.(“/ cos ws + f; sin ws}z -rw,

or

rW =202 (+ 4% - M. (1,93)
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We now collect the formulae of this section and section 1.2.1. This collection is
our

Second procedure
(Perturbed motion of a particle about a central body; elliptical initial condi-~
tions. Variation of elements.)

Data. M = product of gravitational constant and mass of the central body located
at the origin of a cartesian system Xy, X2, X3 .
p; = components of the perturbing force (per unit of mass of the particle).

At instant £ = 0 the position X; and velocities )fé of the particle are

glven.
Initial conditions. At instant &= O compute the initial values of the general-

ized coordinates &«,, U,, Uy, t, of the particle by either of the two sets

2 2 7 > L 4
U, +u, =Z(/‘+x,) , Uy + Uy = L(r—x,) ,
X2 Uy + X3 U Xo Uz + X3 U z
ul-._"__F'T_L_“’ u’___l________-'-, - Z)(‘.'
x4 r—x,
U, = Xy~ Xally w = XU =Xl
3 r+x, ’ 4 r—x,

Take the left- (right-) hand set if X, > 0 (X,<0) and choose «, (wy) arbitrar-
ily. At instant Z= 0 compute also

7 ' . . .
U, ‘Z(“1x1+u:.x2-+“3x3) ’ x

M
4 7 . . . w’-_ Zr.o - 4 »
u, -Z(—u,_x,»'- u, X,_+u4xs) ,
/ 7 . . .
U = g(~us Xg- Uy Xy + U X)) (ry, ¥.= initial dis-

v . . . tance and velocity)
U, = Z( Uy X, — Uy Xy + uzxj) .

The initial values (oc/'}c, [ﬂ)o of the elements <X, , /JJ are now given by
rd
('xy')o - u/. ’ (ﬂ/'jo - ZZ_ u/' .
Furthermore at instant &¢= © we have the initial values

lo=0, W= o0.

/ Vs

AN SR ~ 7
Differential equations., X, o £ sin ws ﬁ-f - 6 cos WS
(argument §) (1,94)
V4
t’ =7, W = Z-?/ (,(/./. /'— /'2’3)4.

At each step of integration compute

2 2 ER 2
X1- Q,—ul—a_,"'(»ﬁ L

\k

= % cas ws + f; sinws, xe= 20upu, — uyuy) (1,95)
1,

/

&

= w(-e sinws + f; cos ws) X3 = 2(u,uz+ U u.) ,

i N L8 z
ro= U, U, Uyt U,
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9 = 2( Uppy+ Lo+ Uy Ps) s

9. = 2(“*‘1101"' Uy py + Uy Ps) s (1,95)
93 = z(z‘ajﬁ% “ U Pt U py),
9 =2( U p~ Ut %), F/'-=£(r%.+214/u/-) .

Checks.

°<¢ﬁ,—°<3/'lz+ o<,_/¢_,-o¢,/§4 = 0 ,
rw - ZwlZ(cc;+ﬁj"} - .

1.3.3 Perturbations of the elements. If the perturbing force is small compared
with the central attraction, it is advisable to establish a companion procedure

computing the perturbations

Aoy = ot =y A/JJ--ﬁJ-—ﬁ/,T sy dr=r-r,, a4t = ¢ ™ (1,96)

of the elements, of distance and of time. As always the subscript A indicates
values corresponding to the unperturbed Kepler motion.

o= (4)s 5 S = (Bl = L (&), .

x, ty are given by (1,80)(1,81) if the initial values CHI C}ZJ, of the ele-
ments are inserted. From (1,92) it follows

Ar = 2. (<4, + 3 4f3) + cos Zwsz‘@ﬂkj—/@-dﬁ/’) + sin2ws J (X, A0 +3.4%)

where E%/ for instance is an abbreviation for the arithmetic mean of the perturbed
and unperturbed elements of the K -type.

Companion procedure

Substitute for the differential equations (1,94) the following routine.
Differential equations.

/AOC/'}, = __a% 6 sin ws , (Aﬂ/}I=ZJZ_ 6 cos s ,
T /7 _ 7
(Aat) 4r , W'= Z,?/a/ )

(Initial conditions /40),= 0, (4f3 )= 0 , (4¢), = 0, W;=0).
At each step of integration compute

Ar = J (&40 +ﬂ; 4/) + cos 2wsJ (%40 -B.40,) + sin Zw.sz_(oEjA/A_?/'+ﬁ:.4a_¢//,

where

= (o) + 74, B = (B + 345,
L Sr= (ﬁf). + Aﬂ/. ;

£~ gt 35 [l)74 (B] + fE wm 2w J[)F - ()]

* 355 (1= cos 2008) 7. (o), (B

&I

1]

&

and proceed with (1,95).
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In order to avoid loss of significant figures, the energy-check should be
modified as follows. Because there is no work done by perturbing forces during the
pure Kepler motion, we have ri = A(/‘h// , hence

rw o= 4w‘Z(o§-Ao9- +/4; 445) . (1,97)

This companion procedure is the basic tool for the numerical experiments out~
lined in chapter 2 of this report (R6ssler). A final remark should be added con-
cerning dissipative perturbing forces such as drag for example. In these cases, the
velocitlies of the particle in physical space are also needed. These are given by
(1,19) namely

v 2 s ’ s
Xy = F(“ru/ —wp Uy —ugul o+ upul ),
Xp= Z (U ] + Uy u]— Ug Ul — w,uf) (1,98)

y 2 ’ ’ / /
x_,a-F(a,u,+a3u,+a,_u¢+u¢az).

1.3.4 Ejection orbits. It must be stressed that the frequency & depends on the

initial conditions; @ should be known with high accuracy as will be shown in
section 1.7. If the particle is starting at instant ¢=0 at the origin (thus
coinciding with the central body) this frequency appears in undeterminate form

2 M _ %
(1,73) w 2r z

because ¢, vanishes and v, 1s infinite. In this case we give only the direction
of the initial velocity vector x, but we give also the numerical value of eilther
w , the constant /l of energy or the semi-major axis @, of the unperturbed
orbit, these gquantities being connected by

(1,54)(1,83) (1,89) w* - —{,1- -1%7’ ) . (1,99)

The unperturbed orbit in physical space is a segment of straight 1ine and from the

glven data the coordinates x‘.' of the apocenter are at once obtained as well as

the corresponding parameters %

is assoclated with the value J-l% , thus we have from (1,76)

Bh= 4 5

by (1,47). In the parametric space the apocenter

the (e;), venish.

If the particle starts not exactly at the origin but near the origin, is

only poorly determined, thus w should also be given in advance and agaln the
initial velocity-vector only by its direction. The velocity uj’ at the initial
instant is then determined by (1,48) up to a proportionality factor. This factor
may be computed from the law of energy (1,56)

ZZ,U/-’Z— M+ rh = M-2ra", (1,100)
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Nevertheless initial position and velocity must be glven with high accuracy if
(1,48) is applied.

1.4 The osculating Kepler motion

We return now to the equation (1,52) of a perturbed Kepler motion

7 M U'l r
. -2 - 2 .= L . 1,101
@'+ (57 4/“/ Z % (1,101)
The osculating Kepler motion at an arbitrary instant Z is by definition the pure
Kepler motion constructed with the actual values of the coordinates &, and veloc-
ities u/-’ at time ¢ as initial conditions 1). The semli-major axis of the oscu-
lating orbit is a function @ of £ or ¢ and is obtained from (1,86)

z

a = ~ (1,102)
Thus (1,101) can be transformed into
7 M - =

u; ia &, 9 (1,103)

The variation of @ , as time goes on, 1is Intimately connected with the work W
done by the perturbing forces. We obtaln explicitly this dependence of @ on w
from the vis viva integral (1,11). This gives

2

%-%,A.,.W, é=—ﬁ(/z+l4//. (1,108)

A disadvantage of (1,103) is the variability of the coefficient of «, . This can
be avoided by introducing a new fictitious time o~ defined by the differential

ds = I/a% do , ol = l/i‘ rds . (1,105)

@, 1s the semi-axis of the osculating orbit at the initial instant E=S= a0,
and may be obtained from (1,102)

relation

%o_ 4

2
M TR

where @ 1is the frequency used throughout section 1.3. The substitution (1,105)

(1,106)

A
(1,89) A 7

transforms the equations of motion into

Ve
v_a . M 2

where accents denote differentiation with respect to o . a’ may be eliminated by

1) This is to say if the perturbing force is switched off at instant Z, the

particle moves onward on the osculating orbit.
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differentiation of (4,104)

_C_l':—_é_ ,-i /_____/_ ,
;11’12) at M W M-Z-%aé h Zaow‘Z‘?éu ’
us

7

z /] a 7 / s
: u; = - — —— 1,10
W+ w gy ¢ao(/~9/+w,_afz_%a‘), (1,107)
The right-hand sides of these equations can be considered as perturbations, because
they are proportional to the perturbing forces. It still remains to express @ by
quantities attached to the parametric space. With O as independent variable
equation (1,49) is transformed into

2 4 a, ,Z
2k 2 4

thus
/ 2 Q. ,2 Z 7 2
2 L= ¢ = = - Ve
(1,102) L =2 M—{‘—P >2.Y T LY
and by solving wlth respect to @
7 / .,2
a= (- ) u/.f/ . (1,108)

As in section 1.3 the equations (1,107) are integrated by variation of constants.

We agree however to denote the new fictitious time again by § and we put there-

fore
7

U= ot oS wS +/§,- snws, 4 co(~oe, s wsS +/<?/- cas ws) . (1,109)

The &/, /_@ are functions of § and are the elements of the osculating Kepler
motion. Its semi-axis is

2
(1,108) (1,45) a = I’/Z(éycos ws +ﬁ/— vh ws)
+Z(_°<j"n wS +/:3/. cosws)l]= z’.Zl(xy‘,«-ﬂ‘/ , (1,110)
as could be expected from (1,84).

Third procedure
(Osculating orbit.)

Data and initial conditions as in second procedure.

avd
4 w*

Compute also Q,=

Differential equations.

< w//:-sm,ws, ﬁ/ w/;Cosws,

u/-, a/., Xe, ?/ as in second procedure. Compute at each step also

(argument s )

a~f 25 ), G-fElry+rlay/Zad).

Check,

Klfﬁf—og,/j,_-fog/i’—oc,ﬁ* -0 .
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As in (1,96) we establish a companion routine by computing only perturbations
with respect to the pure Kepler motion. Let Af = Z— t/\‘ be the perturbation of
time, where 5‘,‘. is the time passed during the motion of the particle on the unper-
furbed Kepler orbit up to the position corresponding to a given value of S.

According to our third procedure we have

¢ = /gr

and in particular on the unperturbed Kepler orbit (@ = Q,=- const.)

Ve
Cu = Iy
thus

(at)’ = l/c%_r - e (1,111)

rx and £, being determined by the formulae (1,80)(1,81) of the pure Kepler mo-

tion.

Companion procedure

Data and initial conditions as in second procedure,

@, =T, (@wl=0, @) ~o. «i)=o.

Differential equations.

zre - _(D/_ £ sinws (Aﬁ,‘)'— wi £ cos ws ,

At each step of integration compute
Iy = @+ fcosZwsZ_[(x/ZZ__ %)olj + Sin Zwsz (o‘c/}‘, (ﬁ/}_ )
le = @S # gy sim 205 7 [CG) = (B)"] + 555 (1-cos 203) 7 (ey), (B,

= Gyl raoy, =), +af, £= f o+ al.

(argument o)

“%,

a= 2"2:‘(“/1"‘//2) , 5= %07/‘ ""cT)/i 4294) .

', X;, Iy 7/- as in second procedure. Compute at each step also

Check. x#/B,—O(Jﬁl.poclﬁ_,—cxfﬁ‘ - 0 .

We should not forget to adapt the rules (1,98) for the velocities to the
modified definition of fictitious time:

. 2 Ve ’ Vd ’
X, = F‘/%’ (“r“{ T - Uy Uy “4‘(9/ ’

. 2
(1,105) Xy = ;I/;“ (] + ] — g - o) (1,112)

. 2 Q. / ’ 4 ’
= Va (4us+ dyu, »uyugreuf)
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The obvious advantage of the third procedure 1is that it avoids the computation of
the work bv’ done by the perturbing forces; moreover, operating with the familiar
osculating orbit facilitates the comparison of classical and regularized computa-
tions. But it should be mentioned however that the companion routine suffers a
1ittle from loss of significant figures because on the right-hand side of (1,111)
the difference of two almost equal quantities appears. Our numerical experiments
however convinced us that this is not a serious danger.

1
1.5 Analytical theory of perturbations )

1.5.1 First-order perturbations. The methods and procedures outlined above are

valid for any particle subjected to elliptical initial conditions and moving under
the influence of a central attraction and perturbing forces. There 1s no necessity

to assume that the perturbing force is small compared with the central attraction.

On the contrary, this sectlon is devoted to the study of perturbing forces
which are infinitesimally small; this is to say a theory of first-order perturba-
tions is developed. As the left-hand sides of the differentlal equatlons (1,107)
are already linear, no linearization is needed; this is in contrast to the classi-
cal theories of first-order coordinate perturbations [6] which are based on the
non-linear differential equations of the Kepler motion. As 1n classical theories
the restriction to first order is performed by evaluating the right-hand sides of
(4,107) no longer on the actual orbit, but on the unperturbed Kepler orbit which
osculates at time Z= 0 ; thus

7 ty -t 4 .’Z // 1,113
Ll/- + W Y Z//‘?/'f'z;ré.(/ ?Aué P (1, )

As always, the subscript /¢ 1indicates values to be taken on the unperturbed orbit.
The ratio Q/Qn disappears because ak = Q,. The right-hand sides of these equa~-
tions

5= 4055 Z 0 e

are known functions of the regularizing time s ; therefore the differential equa-
tions for the elements (as recorded in the third procedure) can be integrated by
quadratures:

- - . ) P 4 . . 1,11
oy t//;‘(.s) snws ds /GJ 20—/6(5) cos ws ds (1,415)
For first-order perturbations (1,111) is approximated by
/ V da ~ rda 1 4a
(AK/ - /7‘?,—-’;‘ (/+Z—a.—)(rﬁf4r)_,;r ~ Aar + 32 Q. P[{ ’

(1,116)
at = flar « % pa)as

1) More details on first- and higher-order perturbatlons are contained in [5].
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thus avoiding loss of significant figures, This implies the computation of

(1,110) da ~ Z.[(%J.,A“/+(ﬂ,-). Aﬁ,‘] (1,117)

and

(1,92) Ar~Aa+aa52wsZ[69}‘Aoc/ ~(BhAS] + sin 2005 ) [6ghdfl + () d05] - (1,118)

Finally % is taken from (1,80) or from (1,45).

Fourth procedure

(First-order perturbations of elements and of time; osculating Kepler orbit.)

Tnitial conditions. As in second procedure.
Computation of the unperturbed motion (oseculating at instant Z= 0 ), For sake of

simplicity of notation the subscript A is suppressed.

M

4w’

a, =

7/

U = (6)y Cos ws + (/6/j° shows , U= w[—(og,', sinws + (), cos ws_/, (1,119)
Perturbing forces

9= 2( wp + s + UspPs) s

@ = 2(~tapyttyp t 4 py) (1,120)
P = 2(~us Pty + &y p3)

Gy = 2( Uy py-tspatUsps) .

- a,s +4Lw sén ZwsZ[(ogj:— (/47:]"'2’?0 (7- cos 2ws),” 4 )o (f3) (1,121)

7 7 s .
% -Z(r?/"fa'?- ‘92:?4‘(4)'

z
x’g u,L—u:'—a;'v"U‘, [y
xs = 2(U4us+ury),

r - dtur U+ U

Un

Perturbations of elements.

boy = =L [ sinws s, afy -zﬁfﬁ' cos ws s .
Perturbation of semijmajor axis
da = Z_:[(oc/},,dxj + () 4/3,/
Perturbation of distance
Ar = A+ cos 205 J [Gg), de = (), ofy] + sin 205 7 [€) 83y # (), 4% -

Perturbation of time

at =/(Ar +2/;.Aa) ds .

Elements of the osculating orbit at instant S .

o = og)ot o,  fBi= (Bh+raf, = 2, + 4T .
Position &;, X; Of the particle from (1,95).
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An account on numerical experiments is given in chapter 2 (R&ssler). In the
sequel the integrals (1,115)(1,116) are computed by Fourier expansion, therefore
some remarks about the periodicity of our functions are in order. A function f(S)
is called symmetric or skew-symmetric if

fls+X) = fe9 or Flsr) = = [

respectively. As can be seen from (1,120) the parametric coordinates u; are skew=

symmetric but the physical coordinates X; are symmetric. Let us assume temporar-
ily that the p; in (1,120) are any functions depending only on the position x;
of the particle in the physical space; thus they are symmetric functions. The
corresponding functions ¢, are skew-symmetric as well as the perturbing functions

/‘;- . But 1t should be stressed that the integrands
7 X ’
(4c,) = "% Ic,- sin ws , (Aﬂ/) - E/T £ cos ws (1,122)
are symmetric and have therefore by definition the period x .

o)

1.5.2 Three-body problem. We consider now the motion of a particle of negligible

mass in the force-field of two heavy bodies moving about each other on perfect
Kepler orbits. As always the first body - referred to as central body - 1s at the
origin of the x; -system and its gravitational parameter (product of mass and grav=-
itational constant) is denoted by /M. The second body of gravitational parameter

/M moves on the relative Kepler orbit, assumed to be an ellipse. Let Q@ be its

semi-major axis and

_ — % -3
pa= (M+ 1) g % (1,123)

the mean angular velocity of this second body, also called perturbing body. N
should be small with respect to A/. In our first-order theory the path of the

particle is also a pure Kepler ellipse, as far as the computation of the perturbing

forces is concerned. In order to compute these forces, the position of the particle
will be fixed by 1ts fictitious time S§ and the position of the perturbing body by
the physical time Z . Furthermore S, ¢ are considered to be independent varia-

bles, since the forces /O[ exerted by the perturbing body on the particle are
defined indeed for two arbitrarily chosen positions of these two bodles.

For a fixed position of the particle the p; are periodic functions of the
mean anomaly (&€ ) with the period 27 ; therefore we may expand them into a
Fourier-series:

L = Z Pin Cis nil : (1,124)

Ne -0

(In order do avoid accumulated exponents, we use the notation césox = cosex +ena ),
The Fourier cocefficients /5, are determined uniquely by the position of the
particle; they are symmetric functions Prn (S) of 8 in the sense of the pre-
ceding definition. By inserting (1,124) into (1,120) the Fourier coefficlents of
the integrands (1,122) are obtained and from our discussion above it follows that

these coefficients are again symmetric functions of S .
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In order to simplify notation let f stand for any of the & integrands
(1,122). The Fourier expansion of the integrands has now the typical form

F =2 fut) csnjct, (1,125)

where /ﬁ(s) is of period é? with respect to its argument S.

But during the actual motion of the particle and the perturbing body the vari-
ables s,¢ are not independent but correlated by the fact that Z 1is also the
Kepler-time 4~ of the particle corresponding to the value of § under considera-
tion. By writing (1,121) in the concentrated form

£ = Qs + )\, + )\3_6052«15 -+ /\3 S 2ews ,
2 2
M=5E 2 @) s MmN, M= gL 2 ekl 0B

equation (1,125) is transformed into

(1,126)

+*Oo

/‘- Z ces nl&a,\s[/;t(s) cis n (A + A cos 2ws + Ay sin Zws)j .
-
x
The expression in brackets is a symmetric function of § of period o and may

therefore be expanded in a Fourier-series of the type

o0

[-./ = ZZ:_./ctv cis 2vws ,

V= -o00
hence

/’ = ZJ&» cis (2vw+ npa,)s , (1,127)

(n,v)
where the coefficients 7€1y are constants. Any integrand (1,122) has such an ex~
pansion and by integration it follows finally

/[a{s = const + fooS +Zf £ cis (2vw +n@a,)s , (1,128)

[CZuaJ+-ana°)

the accent indicating the omission of (7#,V)= (o,0) . The constant must be deter-
mined in such a way that the whole expression vanishes for JS= 0 ., This finishes
the computation of the perturbations A&, of the elements and by further integra-
tion the perturbation at of time is obtained, as was described in our fourth

procedure,

We proceed to discuss briefly the event of vanishing denominators in (1,128).
We have then

where ¢ 1is the mean angular velocity of the particle, determined by (1,85) and
(1,84). A vanishing denominator thus occurs if and only if the mean motion of the
particle and the perturbing body have a ratio that is a rational number. Such a

situation is known in classical celestial mechanics as resonance.



- 28 -

In practice however, the Fourier expansions should not be carried out as de-
seribed above. The following method is better adapted to automatic computation. An
auxiliary variable S, is introduced defined by

Sy = Fat"s;

hence

(1,127) f= ) f, cis(z2vws +ns,), (1,129)
(n,v)

(1,126) t - ;—_4_’—3’ -+ )\1 + A, cas 2ws + A3 Sin Zws . (1,430)

Evidently, the integrands f' can be considered as functions of the two independent
variables S, §, , because any choice of s determines the position of the particle
and then an arbitrary value of §, yilelds a corresponding value (1,130) of time

and consequently a position of the perturbing body. The development (1,129) is then
obtained by tabulating the & integrands /' at equally spaced values of §, s, and

by puting into action a standard automatic routine for double harmonic analysis.

By introducing S, also in the final result (1,128), the result

ﬁ,,(_g - const + fouS +Z" £y cis (2vws + ns,) (1,128a)

‘Ryvw+npas)

is obtained. The term /Qas is the secular perturbation and the sum 1s a double

Fourier-series with respect to s, §, .

In chapter 2 of this report, Dr. Rossler has worked out an ALGOL-program for
computing first-order perturbations, based on the preceding analysis. In order to
obtain consistent algorithms, he introduces also regularized elements 5@::/@ for
the motion of the perturbing body. Furthermore he uses instead of s, S, two modi-
fied independent variables intimately related to the eccentric anomalles of the
particle and the perturbing body.

P.A. Hansen [7] was the first to appreciate the advantages of a Fourler ex-
pansion with respect to the eccentric anomaly of the particle instead of using its
mean anomaly as independent variable as was customary in the works of his prede~
cessors. The introduction of §, 1is due to him. Therefore there are some points of
contact between Hansen's methods and ours. Hansen's procedures are very accurate
and have been widely applied; they can however not handle the problem at hand. Our
main goal has been indeed to establish a perturbation theory remaining valid for
near-collisions with the central body, that is to say for elliptic orbits with
eccentricity only slightly inferior to 7 or even =7, The numerical experiments
described in chapter 2 indicate that this goal has been successfully attained.

1.6 Secular perturbations

The investigations of section 1.5 have clearly indicated that the theory of
the osculating orbit and its perturbations, based on regularized elements, proceeds
along the same lines as in the classical theories of Lagrange, Leverrier and their

SUCCEeSsors.
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In this section we discuss some aspects of literal developments of perturbing
functions and of secular perturbations. We do not attempt to present a complete
theory but restrict ourselves to some examples of relative simplicity. The sub-
seript n » denoting quantities attached to an unperturbed Kepler motion, is sup-
pressed in this section and by ocj,/s‘/- we understand the constant elements of such
a motion., With this convention the equations (1,114) and (1,122) of our first-order
theory can be written

- L Z 7 ’

G=flrg+bw 2 94 ), (1,131)
h
waere U; = o Cos ws-f-/ij sn ws ij = a)(-—ac/-.sin ws +ﬂ/ cos ws}, (1,132)
2
/o= ; ,133
U, (1,133)
Vs . ’ ,

(4eg,;) = -a_C' £y sinws ,  (8B) == F; cos s . (1,134)

We remember the significance of our notations:
Uy, Up, Uy, U = coordinates of the particle in the parametric space,
?/. = perturbing forces in the parametric space,
accent indicates differentiation with respect to $,
4o, 4/4'-perturbations of the elements and

¢ 1s defined by (1,73)

wl- M — .&z
2r, 4 ?

where M is the gravitational parameter of the central mass and

/~

o

¥, initial position and velocity of the particle.

1.6.1 Conservative perturbing potential. Let us assume now that the perturbing
forces p, 1in the physical space may be calculated from a conservative potential
V(x‘-) which depends only on the position of the particle. Taking into account our
KS-transformation (1,44) the perturbing potential becomes a function V(t_l/j in the
parametric space; 1f we replace &, , using expression (1,132), this function is
further transformed into a function V(Oc/-, /8/-; 5} of §, where the o¢, ﬂ should
be treated as parameters independent of §. As was established after formula (1,8)

we have
? !/ 7y
?' j (/) 4

thus
E ? Vd / .
?% Vs fyis) = (%) [904 Veg)fu] ~ -2 g, ¢ (1,135)

the last expression appears in (1,131). From (1,132) we also obtain the partial
derivatives of V/ with respect to the elements o4 and /EL :

2 2 Ju 2V ,
Z/V(@l,ﬂ/,‘s)-/‘g':j‘ V(‘//)_/a&j'-"?/fas ws , 9_,@."?/'5"’- ws . (1,136)
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By collecting (1,131) through (1,136) we have for instance

(Atx, =L (/‘% snws + S"Zf_”‘s u/-/Z: 2, a{}

2 Sn ws s DV
zz(’"a“p; "y 5

Sn ws (_ o

/r?ﬁJ - /5¢nw5+ﬁ/wswsj91//

: 2
[ngﬁ/ Zi—(—%'+°.</'c"52“’$+/‘3/.sm2w5)9_}/]’

similarly

2V
(A/d) / [2/\%/ + /[ﬂ/v/-ﬂlco.sZws os,/,s,nzw_sj _/

This set of rules for computing the perturbations of the og;,/@ is analogous to

the canonical equations for the perturbations of the classical elements. We adapt

these rules to the more familiar classical notation by allowing the particle to

start from its pericenter and introducing the eccentric anomaly £ = 2ws., Hence

r=a(/-ecsk), wz—ﬂ
4a

follows from (1,83). @ 1is the seml-major axis and € the eccentricity; it fol-
lows that

2(boy) _ a[a(r-ecosE)/j #(rogvoycasErfyon) 3 ]

(1,137)

48
dif@) _‘_ZLM[a(f—ecasE)%.,‘(ﬁj,,_ﬁ/.c“E Smfj ]

In order to compute the integrals of the right-hand sides, L/ is expanded into a
Fouriler-series with respect to 57; this implies a literal development, this 1ls to
say that the coefficients of the expansion must be given as explicit algebralc ex-
pressions in the elements “9:,/3 and s or £ ; otherwise their partial deriva-
tives are not available. An analogous analysis can be carried out 1n the case in
which the perturbing potential 1s not conservative but depends expllcitly on time.

1.6.2 Secular perturbations. Let us now investigate the secular perturbatlons of
first-order in the problem of the three bodies. As in section 1.5.2, a bar over a
symbol denotes a quantity attached to the perturbing body. If no resonance occurs,
the secular influence of the moving and perturbing body 1s equivalent to the infiu-
ence of the Gaussian ring obtained by distributing the mass of the perturbing body
over its elliptical orbit proportionally to the Kepler time on this orbit. The
potential of this ring at a given point in the physical space 1s the integral
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y--2/L (1,138)

wI_1_ere Y= is the distance from the given point to the general point of the ring,
M the gravitational parameter of the perturbing body and 7 1ts time of revolu-
tion. (Fig. 1.3). The perturbing potential |}/ 1s conservative and thus our rules
(1,437) are applicable. If

V- 1{,+1/,6055+ Z.r/nE+~-- (1,139)

is the Fourier expansion of this potential, we need only the first three coeffi-
cients Vo, l{, 14, because we are only concerned with secular perturbations and
are therefore only interested in the constant terms in the Fourier-series of the
right-hand sides of formulae (1,137).

Ll

X3

Fig. 1.3. Gausslian ring.

The further investigations of this section are restricted to a circular motion

of the perturbing body. (Fig. 1.3). The circle of radius & 1is assumed to be in
the X,, X;-plane and the position of the particle is described by polar coordinates
r, z/?, ? . In this special case the potential V of the circular ring is given by

the Legendre expansion

V=8 (R () Bt (1140

where Pzn is the Legendre polynomial of degree (27). Because both sides are
harmonic functions, it is sufficient to verify this formula for U= 0 (particle
on the X,-axis). It is then reduced to

v -4 2n vy r )2 -% M
V-2 R)G) --# T e

The last expression is undoubtedly the value of the ring-potential at a point on
the Xy, =axis. The seriles (1,140) is convergent in the interior of a sphere having



- 32 -

the circular ring as its equator. In order to transfer b’ into the parametric
space, we use the explicit formula

Z’LP ( 73 - . {;,L&_ (2’1-) 24 2_ lj4/< 2(""'4} (1 141)
rr 23 (€08 ) £ 4~ 2L (& ) (r —Xx, v . »
-0

From the KS-transformation the following expressions are obtained

(1,44) Xy = UF—uE—wl Ul
L

(1,47) Fex, = 2(ur+ul) r-x, = 2(u, + a;) ,

hence

n by2n\|2L -
r Fon = Z("/ (ZZ)( L )(“yl" ":/4/6(:»‘4(,‘}4 (a,‘-u,_"-u;»«-a;jz(n “(1,142)

n. 1)
The zonal harmonics 2~ /A are thus homogeneous polynomials of degree (4n) in

In
the parameters «, . The formulae (1,140) and (1,142) establish the perturbing
potential in the parametric space. According to the computational program outlined
in the first lines of section 1.6.1 it still remains to introduce the elements
o, /5 + This 1s achieved by formula (1,76) adapted to the eccentric anomaly
E = 2ws.

£ y &
‘9"’ OCJC“—Z +ﬂ} Slnz . (11143)

The equations (1,137)(1,140)(1,142)(1,143) furnish all the necessary tools for com-

puting the secular perturbations due to a perturbing body moving on a circular
orbit,

41.6.3 An example. In order to give an example of explicitly computed secular per-

turbations, we truncate the series (1,140) after 2 = 7. This 1s only reasonable
if the particle does not closely approach the perturbing body. With this approxi-
mation we obtain from (1,142)

/‘—7 L 2 2 2 x '- * *
V= E"/‘/ +2’&z[(a,—-al—a3 +U¢)1_2(ar "‘az,c)[uz * ‘{lj_//

and by (1,143) this becomes a Fourier polynomial in E.

Working with this perturbing potential Dr. RO&ssler has computed the secular
perturbations; by introducing new quantities, connected with the classical orbital
elements, he obtains a rather simple result.

Let (Fig. 1.4) /I,C? be pericenter and apocenter of the orbit of our particle
and 63, 0 the endpoints of the minor axis. The corresponding values of the eccen-
tric anomaly are in that order

£: o0°, 71&0°, F0°, 270°,

17711: can be proved that they satisfy the 4-dimensional Laplace equation as does
any harmonic function in the physical space if transfered into the parametric
space.
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consequently these 4 points have the parametric coordinates (1,143)

@ oy, . Zeyrs), Z(yep).

ring

Flg. 1.4. Approximate secular perturbations.

By straightforward arithmetic the altitudes X,4, X,g, X;c, X,p are obtained from
the KS-transformation (1,44). In particular it turns out that

2 2 2 2 2 2 z 2

XIA"KICQOCI—“&—&J-'fo_ﬁ/ +ﬁ*+/)?3 -ﬁﬁ 4 (1,144)

X8 ~Xp= 2-("9/31—“2%1 “X.sﬂg"‘oﬁ/%) . (1,145)

The shape of the Kepler orbit may be determined by its axis and its eccentricity

P 3 2 2 t N 2

(1,84) a=2l@¢,‘+o<:+a<;+c\:¢+/6, +/32+ﬂ,+/3;), (1,146)

/ 2 2 2 :._ 2-_ x PR 2.
(1,87) e~-5= (o) +06, +0¢5 +0x, B f -, —ﬂ“) , (1,147)

its position in space by the two "inclinations"
7 -
o-gfé(xu -XfC) ’ T-Z_a- (x’d XYO) . (1,148)
With this notation the final result is as follows

— 3 2
A“/.__g_g_f(aﬁ/ ((o-e F1)T0 +[§+e+3—’ezio-(f+3e+ej—a‘ejﬂ-}£, ,
1,149)
- 3 2
48 = %%(?3/ {(O'e ;/)z-/%'+[3£-6+§ez;°_(’”3e*e)*°%/°‘/}5'

The upper sign must be taken for /= %4 4 and the lower for /= 2,3. The verifica-
tion of this result is a little tedious but straightforward, the identities (1,78)

and (1,87)
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06,/9,—0%/62+ °<,_/3J—o<,/34 =0, Ot,/J;y-oc,/Sz +a<,/3j, *x, B =0

being used several times. As always the elements qy./§; are computed according to
the rules "initial conditions" of our second procedure (section 1.3.2).

In chapter 2 {cf. 2.2.5) Dr. Rossler describes four different methods for com-
puting the motion of a satellite about the earth, taking into account the perturba-
tions by the moon and he discusses also thelr accuracy. The four methods are:

First method (cf. 2.2.5.2). Companion of the second procedure (section 1.3.3).

Second method {c¢f. 2.2.5.3). Companion of the third procedure (section 1.4).
Computation of the special perturbations of the elements of the osculating or-
bit by numerical integration of the corresponding differential equations.

Third method {ef. 2.2.5.4). Analytical first-order perturbations of the elements
by double harmonic analysis (fourth procedure, section 1.5.1). In particular
secular perturbations.

Fourth method {cf. 2.2.5.5). Secular perturbations according to the formulae
(1,149).

The orbit of the satellite under consideration has eccentricity 0.5 and high in-
clination with respect to the ecliptic; the very small difference between the re-

sults of the second and third methods is due to the perturbations of higher order,
the fourth method gives the perturbations of the elements with an error of only a-
bout 4%. The reason for this 1s not the high eccentricity or large inclination but
is simply the truncation of the Legendre serlies. (The ratio a: a is 7:6.).

We have not established a companion formula to (1,149) for the perturbation of
time. According to our fourth procedure, to do so would require as a prerequisite
the computation of

(1,117) da = P [() Aoy +(8), 44 ] - (1,150)

In the three-body problem the Adg: and 4/% appear as series of the type
(1,128), but 1f these series are inserted into (1,150) the secular terms cancel out

because of the well-known fact that there is no secular first-order perturbation of
the axis of the osculating orbit. Thus

da = 2 Q,, cis (2vw +nga.)s , (1,151)
(n,v)
with unspecified coefficients @, ,. For the evaluation of the secular perturbation

(1,116) of time the constant term Q,, of this series is needed; this term 1is de~
termined by the initial conditions at instant s = 0O :

/
da=o, a,=-2 a,,- (1,152)
(n,v)

Therefore all the coefficients @,, with (n,”) % (0,0) should be known and con-
sequently also all the Fourier coefficlents of the expansion (1,139) of the per-
turbing potential are required. We recall the fact that three of these coefficients
were sufficlent for establishing the secular perturbations of the elements. This
complication makes 1t impossible for us to establish a formula for the perturbation
of time which is as simple as (1,149). A similar complication occurs in the classi-
cal theory 1f the perturbation of the mean anomaly is wanted.
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Not only perturbations by a third body can be computed by our analytical
theory, but also perturbations of other types as for instance that generated by the
asphericity of the earth. But in that case convergence is not so rapld because the
perturbing potential is no longer regular at the origin (center of the earth) as is
assumed in section 1.1.

1.6.4 An ejection orbit. In order to demonstrate the merits of regularization, we
compute in this section explicitly the secular perturbations of an ejection orbit.
(Fig. 1.5). A particle is ejected from the origin A 1into the Xy, Xp-plane,

physical plane

parametric plane

Fig. 1.5. Secular perturbation of an ejection orbit.

Under the influence of the attraction of the central body (located at A ) its un-
perturbed orbit is a segment AC with apocenter at (. Let @ be the angle be-
tween this segment and the Xs;-axis and 2@ =7 the distance AC. The perturbing
Gaussian ring is still a circle in the X;,X3-plane with radius @ . The unperturbed
as well as the perturbed orbit are in the X, Xx,~plane; therefore it is sufficient
to take only this plane and the U, Uy-plane of the parametric space into consider-
ation. The correspondence between these two planes is given by Levi-Civita's trans-
formation (1,25)

P A LA
Xp=lg =y, Xo=2U u, ,
or in complex notation (1,153)
X = e? (x= x,+C %, , a,-a,+iu,_)

The orbit in the parametric space is thus the straight line CC building the angle
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‘z"?’ with the «,-axis and the parametric coordinates of the upper point C are

» .
a,-cosf, a*n s:nf.

2 2 2
As was pointed out in section 1.3.4 the elements of the unperturbed orbit follow at
once from this information 1)
x, =0, o&,=0, /dfncasf, A=.sin£. (1,154)

Furthermore we have according to the definitions (1,146)(1,147)(1,148)
a_zf, e.;f, - = —cos p , T - O . (1:155)

The perturbations (1,149) are now reduced to

A%,=/\'(2-5casp-cosl;ojca.s£, Aﬂ,— o,

(1,156)
Ao, = /1’(2+5cos;a-—605";o) 5¢'n£ , Aﬁ)_ - 0
with
Vv 3
/(__iﬁ(_ijg _ 1,157
g Mz (1.450)
As time goes on, the osculating Kepler orbit i1s thus given by (1,76)
U, = A(2-Scasp - cas':«:}ca,sgcaszf + cas—zz’ s:hf ,
(1,158)

azg/f(2+5-ca.sf’~ca$l;a)$/n£ajz—5— + .sr'nzz s:’né’—_ .

In the &,,4-plane the point (€ and the point P with coordinates

A (2-5cos g - cos'p) Cas?i_a , A2+ §oa.s;o—casl/b)5/nf

are endpoints of conjugate diameters of the ellipse. In Fig. 1.5 the values

?: 6o°’ /r: —0.,5

are adopted. The ellipse in the ¢, «,-plane 1s constructed from the conjugate di-
ameters. The endpoints of its major and minor axis are mapped onto the apo~ and
pericenter of the osculating Kepler ellipse in the physical X,,X-plane.

This example is also computed in chapter 2 {cf. 2.2.6) by using the fourth
procedure and double harmonic analysis. The Fourier expansion of (4de) is printed
out. Furthermore the same investigations are carried out for a circular unperturbed
orbit in the X,, X,-plane {cf. 2.2.7). The rate of convergence of the Fourier-series

1.7 On stability and convergence

In this section some remarks are added concerning the numerical stability of
the integration of the differential equations and the convergence of the Fourier-
series; we do not attempt to establish a complete analysis of this kind of problem.

1) The elements Xy, 0'-‘(,/3,,/3“ vanish for all the orbits under consideration.




~—f eSS,

- 37 -

1.7.1  Stability of pure Kepler motion. The regularized differential equations are

(1,74) W+ W= 0, J=123,4, (1,159)

where accents mean differentiation with respect to the filctitious time s defined
by
(1,47a)(1,45) b= s o= Z-_ (,9" . (1,160)

The four unknown functions ¢;(s) are subjected to given initial conditions at
instant §=0:

4(o) = (u), , (o) = (&), . (1,161)

We shall now discuss the influence of errors A(@J, » A(«¢/)s 1in the initial
values on the calculated motion of the particle, assuming & fixed and exactly

known in advance. Such errors generate errors

(1,77) Ay = Alwy), , 2f =L A, (1,162)
of the regularized elements and thus also errors
(1,76) Adu; = (doy) cos ws + (Aﬁ,} Sr ws (1,163)
of the solutions of our differential equations. It follows

4| « |sa| + |48 . (1,168)

Therefore the IAf7l are at any time smaller than a given quantity € provided the

errors of the elements are sultably small:

£ £

|A°<.'/'| <z IA/’Jl <z -

Thus we have the result that the differential system (1,159) has the property of
strict stability.

Errors of the coordinates &, may occur at any step of numerical integration
and such erroneous values are then used as initial conditlons for the next step.

Because the true motion is strictly stable, as integration proceeds such errors do

not carry the calculated position of the particle too far away from its true posi-
tion. Thus the numerical integration of (1,159) is numerically stable. The classi-

cal equations of Kepler motion do not share this property, because they are not
strictly but only orbitally stable. 1)
mulation of truncating or rounding-off errors. Chapter 4 will be devoted to some

In this section we do not discuss the accu-

1) The reader will recall that strict stability is a much stronger condition than
the more usual orbital stability. Orbital stability requires only that if silightly
perturbed, the particle follows an orbit which is very close to the unperturbed
orbit, but it may at a later time be at a position on this orbit quite different
from the corresponding position on the unperturbed orbit. Strict stabllity requires
in addition, that at a later time these positions are close to each other.
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aspects of this more difficult realm of problems.

It must be recalled however that the frequency <& 1s determined by the ini-
tial conditions

2~
(1,73) wr = L

2 7 (1,165)

Consequently 1t may happen that a slightly erroneous but constant value of &« 1is
used at every step of integration. Instead of the true coordinates

U (s) = oLy Cos wsS +/8J- s s

the modified values
u/"'(s) = o cos(w+dw)s + LB sim (wrdw)s (1,166)

are thus computed, assuming for the sake of simplicity the initial values (1,161)
to be accurate. In order to facilitate the discussion we introduce a varlation 4s
defined by

AS Aw
L - (1,167)

Then we have

u/."‘(S) = & cos w(s+as) + S sin w(s+A4s)

or

u'(s) = ls+4s) . (1,168)

This equation shows that the orbit is not changed at all, but the calculated posi-
tion of the particle on its orbit moves away from its true positlon on this orbit;
this phenomenon is of unstable character since As is proportional to S. More
precisely it follows from (1,167) that the relative error of S 1is equal to the
relative error of ¢’ . The motion (1,159) is thus orbitally stable but not strictly
stable. Therefore & should be given with very high accuracy. By virtue of equa-~
tion (1,83) this is equivalent with an accurate value of @. As in the classical
theory the semi-major axls @ 1s the most lmportant orbital element.

In practice we are faced of course with a superposition of the two phenomena
discussed above. Any errors of the position of the particle and 1ts velocities in
physical space produce indeed errors of the elements o as well as an error of
¢J . Nevertheless it must be stressed that after cholce of a fixed value of w the
numerical integration of (1,159) proceeds with perfect numerical stability as was
pointed out in the preceding discussion. This integration is thus reproduceable

even if different numerical techniques or different automatic computers are used.

It still remains to discuss the influence of erroneous initial values on the
physical time ¢ 1if time is computed by

¢ -/p s . (1,169)

As at the beginning of this section we assume a fixed and accurate value of the
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frequency (J . As can be seen from (1,81) errors Ao, AV% produce a secular per-
turbation

Al = fZ‘/A(oc/fj > AG@‘// (1,170)

of the time, hence the computation of physical time is unstable.

We illustrate this phenomenon by the following very simple example of planar
motion. (Fig. 1.6). The initial position of the particle is the point (7, 0) of the
Xy, Xa =coordinate system and the initial velocity is (O,7). By puting A =/ we
obtain as orbit of the particle the circle ¢ and the motion of the particle is
determined by

po=C, (1,171)

where & 1is the true anomaly (polar angle) and Z the physical time. From (4,165)
it follows

7
w= 4. (1,172)

Fig. 1.6. Stability.

Let us assume now that an error €& occurs in the vertical component of the initial
velocity, such that the initial position (7 0) remains as before but the initial
velocity (0, /+&) is used. According to our assumptions the differential equations
(1,159) are integrated with the true value (1,172) of @ but under the erroneous
initial conditions

(xg)o = 7, (Xe)o=0; (X),= 0, (K3);= T+ec. (1,173)

In order to obtain the results of this integration we compute the corresponding
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elements o, 4 . From the rules "initial conditions" of the second procedure
(section 1.3.2) we have

(a)o =1, (aa)y= 0 5 (om0, (&) =125,

o, =17, o, = O ; B, =0, o= 1*re, (1,174)
and thus the errors of the elements are

Aoy, =0, Lde,=0 ; 48, -0, 48, = ¢, (1,175)
The motion of the particle in the parametric plane is now
(1,76) “, = cas ws, ;= (1+&)sn ws
and for the special value s=2x we obtain L(.,-—I, &, = 0, hence
(1,44) Xy =1, xp= 0.

The particle is again at its initial position, this is to say at point F; of
Fig. 1.6. The corresponding value of physical time is

(1,81) t=z[1+(126))] ~ 22 (1+¢).

At this instant the anomaly of the particle on its true orbit is g = 2% (1+ <)
as follows from (1,171) and the corresponding point is denoted by 7,_ in Fig. 1.6.
After one revolution we have thus the error 2Z& in the true anomaly. After many
revolutions this error is multiplied by the number of revolutions and this result
demonstrates clearly the instability of the computation of motion.

In contrast to these considerations let us discuss now what happens if the
motion is determined by integration of the classical equations of celestial me-
chanics. The erroneous initial conditions (1,173) put the particle on the elliptic
orbit € of Fig. 1_.6_ Its semi-major axis @ 1is determined by

N
(1,86) Laz2-(1re)" ~1-2e, a~fr2e
and the corresponding revolution time 1s according to Kepler's third law
Y% 3
7T =27a =~ 2x(1+2¢) “ o 2x (7+3c) .

After this time the particle is again at initial position A =4 but on its
true orbit it 1s at position 7, corresponding to the value @ = 2% (7+3e) of
the true anomaly. In this case we have therefore after one revolution the error

62X £ 1in the true anomaly.

We may thus establish the following conclusion. In this example the regular-
ized method is characterized by a mild instability, due to the underlying correct
value of @3; but the classical method has a sharp instability, the ratio of the two
instabilities being about 7:3.

As above we may venture to predict now the accumulation of truncation- and

rounding-off errors during a numerical integration. If regularized methods are used
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the errors of a single integration-step deteriorate as always the accuracy of the
initial conditions for the next step. But because the same fixed value of w is

used at each step, we may hope that the accumulation of errors is governed by the
mild instability and 1s thus more favourable than for the classical differential e-

quations. This prediction is corroborated by the numerical experiments in chapter 4
of this report.

We may summarize these considerations as follows. Our regularized methods are
characterized by a neat separation of the computation of the orbit from the deter-

mination of the position of the particle in its orbit. This separation may be con-

sidered to be an advantage since it has the tendancy to stabilize the computation.

Our discussion of stability brings out the deeper reason for our attitude in
preferring the companions of the second and third procedure {cf. 1.3.2 and 1.4) to
the procedures themselves; in the companions the dominant part of the physical time
! (that is the Kepler-time tK ) is computed by an explicit formula and not by nu-
merical integration.

1.7.2 Convergence of Fourier expansions. We now proceed to discuss a very simple

example which demonstrates the advantage of expansion with respect to the eccentric
anomaly in contrast to expansion with respect to the mean anomaly. We restrict our-
selves to plane motion of the particle (Fig. 1.7). As always the central mass /™M
is located at the origin and ~, 1is the distance of the particle from the origin.

Fig. 1.7. Convergence of Fourier expansion.

Let furthermore the particle be subjected to a conservative perturbing potential
V?fj which depends only on the distance /-~ and is an analytic function of the
complex variable »~ regular for all values of ,~ satisfying

Il < a. (1,176)
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This situation occurs for instance if the perturbing potential is generated by a
circular Gaussian ring (cf. 1.6.2) of radius @ lying in the plane of motion and
centered at the origin.

On a Kepler ellipse with semi-major axls @ and eccentricity €, the distance
of the particle is

r=a(7- ecos £), (1,177)

hence the potential i1s transformed into an analytic function of the complex varia-
ble £ which is the eccentric anomaly. We shall now discuss the domain of regular-
ity of this function. We put

E=op+ly (1,178)
and we have accordingly
7-ecas £ = /—e(cosgo-a.y)—ds:h;a-JAw),
where CA, SA are the hyperbollc functions. Thus
|7-e cosEIz = 7-2ecosp Chy + e(ews’p- C/;Ly, + 5,',,’;(,.&{1;0)
~71-2ecosp Chy + (G- san’p) .
This expression attains its maximum value for y-fl", this value being

I+2ehypr Gy = (TreChy)’,
hence

|7- ecos £] < 7+ ety

and
lrl < a(trechy). (1,179)

Let now 3, be the solution of the equation

a(f+eCGy)=a , a%‘g’(’%'f/~ (1,180)
Tnis value 7Y, does exist as a real and positive quantity if

é/—i——//>/, a>a(t+re),

this 1s to say if the apocenter (and consequently the Kepler ellipse) is well in-
side the circle of radius @ described above. Assume now |%| < w,. From this
hypothesis and from (1,179)(1,180) it follows |~|< & . Thus the potential V 1is
regular in the interlior of the horizontal strip (%l < Yo of the complex £ -plane.
(Fig. 1.7). Since V 1s a periodic function of £ with real period 2%, the
Fourler expansion of V with respect to £ converges in the interior of this
strip and in particular it converges uniformly for all real values of the eccentric
anomaly £.

Let us consider now the family of orbits contained in the interior of a con-
centric circle of radius # & . For any orbit of this family we have
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a(r+e)<ta, %y = —e’-(—Z——//>2+-é’- > 3

and W, > 7. 76

For all the orbits of the family the function V 1is thus regular in the common
strip Iyl < 176 regardless of the eccentricity of the orbit and even for a col-
lision orbit (the segment ©OA 1in Fig. 1.7). The rate of convergence of the Fourier-
series of V with respect to E is determined by the breadth of this strip; hence
the convergence is uniform with respect to the individuals of our family including

the collision orbit with e=7.

The situation is different if the mean anomaly 7 1is used as independent var-

iable, defined by the Kepler equation

m= £ —e sink . (1,181)

In order to establish V as a function of 7,1, this equation must be solved with
respect to £ . This operation produces new singularities namely branch points in

the complex Mm-plane determined by

dm /—ecs £ = 0.

dE
One solution £, of this equation is a point on the imaginary axis of the £-plane
and the corresponding branch point m, 1is also on the imaginary axis of the m -
plane. If the eccentricity € increases and approaches its limit /, the points
E,, m, approach the real axis of their planes. Because 7, is a singularity of
V (considered as function of m ), the Fourier expansion of V with respect to
m will converge very poorly for highly eccentric orbits of our family and we have

no longer uniform convergence in our family.

As we can see from this example, the convergence with respect to m is ex-
tremely sensitive to the eccentricity of the orbit, whereas the expansion with re-
spect to £ does not suffer from thils disadvantage.

More information about the rate of convergence of such Fourier-series is a=-
vailable by consulting the theory of asymptotic behaviour of the Fourier coeffi-

cients of analytic functions.

1.8 Conclusions

We 1ist here some characteristic properties of the regularizing methods that

are presented in this report. We also compare these methods with some classical

procedures. Only the KS-regularization (cf. 1.2.1) is considered.

1.8.1 General theoretical aspects.

- Regularized methods are not sensitive to the eccentricity of the (unperturbed)

orbit, they remain efficient for collision orbits without loss of accuracy or con-

vergence,
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- The differential equations of a pure Kepler motion are linear. This incorpo-
rates the theory of perturbed motlions into the well-explored realm of forced oscil-
lations with non-linear restoring forces; discussion of stability and error propa-
gation is thus facilitated.

- Because the coefficients of these linear differential equations are constant,
the methods of "perturbations of coordinates" and "perturbations of elements" are
practically equivalent in contrast to the classical approach.

- The regularized orbital elements are unambiguously defined even for a collid-
ing osculating orbit and determine this orbit unambiguously. They obey a simple set
of differential equations. But since there are 8 such elements and since the ficti-
tious time s 1is introduced, a system of 9 or 10 first order equations must be in-
tegrated. The classical theory uses only 6.

1.8.2 General perturbations (Double Fouriler expansion).

- In all our experiments the rate of convergence of the Fourier-series was not
appreciably influenced by the eccentricity of the osculating orbit; in particular
it was for ejection orbits as well as for nearly circular orbits.

- However the formal apparatus 1s slightly more complicated than in the classi-
cal Lagrange theory. In particular, the theory of the osculating orbit was devel-
oped only for the case of a finite semi-major axis. (No parabolic or hyperbolic
osculating orbits).

1.8.3 Numerical aspects.

- The use of the fictitious time § causes a modification of the step length of
integration which gives a "slow motion picture" of the particle's motion in the vi-
cinity of most sharp bends in the orbit and, in particular, when the particle is
near to the attracting center. This property is advantageous for the computation of
transfer orbits from one celestial body to another,

- However, because the physical time t appears as a function of the independ-
ent variable §, the computation of particle's position at a given time ! 1is only
feasible by interpolation.

- In our numerical experiments we always used the Runge-Kutta method for inte-
gration of differential equations., Error propagation was more favorable by far for
the regularized computation of the coordinates X; (pure Kepler motion) than for
the integration of the classical equations

VA A
X =—25 X

(Cowell's method). With high probability this statement will remain true for per-
turbed orbits and if elements instead of coordinates are used.

- Consequently a larger step may be used than for classical integration. This
advantage outweighs the increase of numerical labor due to the transformation of
coordinates and time and the higher number of differential equatlions required by

regularized methods.
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- Therefore regularized methods may be more economical than classical ones, in
particular if there is high eccentricity. This prediction was corroborated by ex-
periments of Dr. Rossler (cf. 2.1.6). He computed the perturbations AX; of the
coordinates:

1. By our second procedure {cf. 1.3.2).
2, By Encke's method [6, page 176].

- There are more refined methods for numerical integration than Runge-Kutta (for
instance Fehlberg's method). If they need the derivatives of the perturbing forces,
regularized methods are not advantagsaous, since the transformations involved in
regularization complicate the computation of such derivatives.
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5. COMPUTATIONAL PROGRAMS FOR SPECIAL AND GENERAL PERTURBATIONS

WITH REGULARIZED VARIABLES

by M. Rossler

2.1 The program NUMPER ("numerical perturbations")

This program (Appendix g;l) is a synthesis of the companion procedures of the
second and third procedure deseribed in sections 1.3.3 and 1.4. As perturbing force
only the gravitational influence of a third body 1is taken into account; for other
perturbing forces a special subroutine must be built in by the user. The motion of
the perturbing body 1is either assumed to be an unperturbed Kepter ellipse or it can
be given by an ephemeris. In the latter case interpolation 1s carried out by La=-

grange's formula. Numerical integration 1is performed by the Runge-Kutta method.

2.1.1 List of symbols. The program is written in ALGOL 60, therefore some modifi-

ecations of the symbols used in chapter 1 are needed.

real
T0 = 1instant of physical time attached to the given initial conditions.
H = total energy h of the particle per unit of mass at time TO (only
needed for ejection or near-ejection {(ecf. 1.3.4)).
M = gravitational parameter of the central body (product of gravitational

constant and mass).
X1,X2,X3 = coordinates of the particle in physical space.
R — distance of the particle from the central body in physical space.
v4,V2,V3 = components of veloclty of the particle in physical space.

v = magnitude of velocity of the particle in physical space.

oM = w f{ef. (1,73)).

o = £ 5 (g2 (g)2), 2= 4 (el (@), o= LlehkEk
where (o), and (B;), are the elements of the initial osculating
Kepler orbit {cf. second procedure of chapter 1)}.

MP = gravitational parameter of the perturbing body.

XP1,XP2,XP3 = coordinates of the perturbing body.

%P = distance of the perturbing body from the central body. W
VP1,VP2,VP3 = components of velocity of the perturbing body.
VP = magnitude of velocity of the perturbing body.
OMP = angular velocity of the perturbing body to be computed by the following
modification of formula (1,73)
OMPt2 = (M+MP)/RP/2-VP#VP/4 ,

where RP and VP are initial distance and velocity.
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A -2 ~2 4 —_2 =2 - =

T (35+8), cre £ -8, cr3 =) &
where & and fi are the elements of the Kepler orbit of the per-
turbing body.

The symbols in square brackets above and in what follows are only needed if the
perturbing body moves in a pure Kepler orbit.

.
TBEG
DTTAB
JTFL

3

initial instant of the ephemeris of the perturbing body.
step of the ephemeris.

scaling factor for adaption of the unit of length in the ephemeris to}
the unit of length in the program. (The coordinates XP1,XP2,XP3 are

obtained by multiplying the rectangular coordinates of the ephemeris
by this factor.)

J

The symbols in curly brackets above and in what follows are only needed if the
motion of the perturbing body is given by an ephemeris.

P1,P2,P3 = components of the perturbing force in physical space.

SUM

A
DR

DS
TMAX
S

SP
T

integer
N

NTAB
NDEG

NOUT

boolean

E qjuf s where q; and uj are the components of the perturbing
force and the velocity in parametric space.

semi-major axis of osculating orbit (only needed if the third proce-
dure is used {ef. 1.4)).

Ar = perturbation of the distance of the particle from the central
body (only needed if the second procedure is used (cf. 1.3.3)).

step of Runge-Kutta integration (fictitious time).
integration 1imit (physical time).

fictitious (regularized) time of the particle.
fictitious time of the perturbing body.

physical time.

number of differential equations to be integrated (for N = 10 the
companion procedure of the second procedure is carried out, and for
N = 9 the companion of the third procedure).

number of entries in the ephemeris, diminished by one.
degree of the Lagrangian interpolation polynomials.
after NOUT Runge-Kutta steps the physical time, coordinates and veloci-

ties and the perturbed elements of the particle are computed and
printed out.

NEARCENTRE : if ftrue, the particle is assumed to start very near to the origin

array

or exactly at the origin (cf. 1.3.4), then the value of H 1s needed,
and V1,V2,V3 may be put in with an arbitrary scaling factor, so that
they indicate only the direction of initial velocity,

if false, normal initial conditions as described in the second
procedure.

ALO,BEO[1:4] = (), '(ﬁﬁ. = elements of the initial osculating Kepler

orbit.



AL,BE[1:4]
U,DUDS[1:4]

[ALP,BEP[1:4]
pP[1:4]

(PAB[1:3,0:NTAB]

LAM[0:NDEG]
FCT[1:3]

DEL[1:N]

Q[1:4] =
G[1:N]
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o, B; = perturbed elements (varying with time).

uj Ujl = parametric coordinates and velocities of the parti-
cle.
;. f?j = elements of the perturbing body. 1

parametric coordinates of the perturbing body.

= coordinates X;(t,) of the perturbing body taken from the )
ephemeris.

kk = coefficients of Lagrange's interpolation formula. !

%(t) = interpolated coordinates of the perturbing body.

either ( Aw;, AB;, At, W ) if the second procedure (N = 10) 1is
used

or (A«;, AB;, At ) if the third procedure (N = 9) is used,

where Ae;, AB; = perturbations of the elements, At = pertur-
bation of time and W = work done by the perturbing force.
components of the perturbing force in parametrlc space.
right-hand sides of the differential equations.

2.1.2 Underlying formulae.

2.1.2.1 Initial conditions of the particle at instant T = TO :

a) NEARCENTRE = false (normal initial conditions).
Given: initial position X1,X2,X3 and initial velocity Vi,V2,V3. We compute im-
mediately w and the elements («;),, (B;)e , choosing uy= 0 or u, =20
(cf. (1,47)), thus

R := SQRT(X1#X1+X2*X2+X3#X3); (2,1)
if X130 then W
ALO[1] := SQRT((R+X1)/2); ALO[2] := X2#ALO[1]/(R+X1);
ALO[3] := X3+aLO[1]/(R+X1); ALO[4] := 0;
else L (2,2)
ALO[2] := SQRT((R-X1)/2); ALO[1] := x2*ALO[2]/(R-X1);
ALO[3] := 0; ALO[4] := x3#ALO[2]/(R-X1);
V 1= SQRT (V1#V1+V2#V2+V3#V3); (2,3)
OM := SQRT(M/R/2-VeV/4);
BEO[1] := ( ALO[1]#V1i+ALO[2]#V2+ALO[3]#V3)/0M/2;
BEO[2] := (-ALO[2]*Vi+ALO[1]#V2+ALO[4]#V3)/0M/2;
BEO[3] := (~ALO[3]#V1-ALO[4]#v2+ALO[1]#V3)/OM/2; (2,4)
BEO[4] := ( ALO[4]#Vi-ALO[3]#V2+ALO[2]#V3)/0M/2;
b) NEARCENTRE = true (start near the origin or exactly at the origin).

Given: H,X1,X2,X3 and V4,V2,V3 down to an arbitrary scaling factor. We compute
R as in (2,1); OM := SQRT(-H/2); V as in (2,3);

if R=0 then
ALO[1] :=

ALO[2] := ALO[3] := ALO[4]

]
(@]
[y

Af V10 then

BEO[1]
BEO([3]

:= SQRT((V+V1)#M/V)/OM/2; BEO[2] := V2#BEO[1]/(V+V1);
t= V3#BEO[1]/(V+V1); BEO[4] := 0

.o

else
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BEO[2] := SQRT((V-V1)*M/V)/0M/2; BEO[1] := V2*BEO[2]/(V-V1);
BEO[3] := 03 BEO[4] := V3#BEO[2]/(V-V1);
else
ALO[1],AL0[2],ALO[3],ALO[4] according to (2,2);
true magnitude of velocity VC from
VC := SQRT(2#M/R-4#0M#0M);
BEO[1],BE0[2],BEO[3],BEO[4] according to (2,4), but with the
true veloclties V1/VeVC,V2/VaVC,V3/VeVC instead of V1,V2,V3.
In all cases we also compute
c1 := ( ALo[1]12+ALO[2]t2+ALO[3]12+ALO[4]12+BEO[1]t2+BEO[2] 12
+BEO[3] t2+BEO[4] t2)/2;
c2 3= ( aLof{1]t2+aLo[2] t2+ALO[3] t2+ALO[4] t2-BEO{1] t2-BEO[2] 12 (2,5)
-BEO{3]12-BEO[4]12)/2;
€3 := ALO[1]+#BEO[1]+ALO[2] #«BEO[2]+ALO[3]#BEO[3]+ALO[4]#BEO{4];

Elements of the orbit as in 2.1.2.1 a), but replace X1,X2,X3 by XP1,XP2,XP3;
v1,V2,V3 by VP1,VP2,VP3; ALO[1:4],BEO[1:4] by ALP[1:4],BEP[1:4]; OM by OMP and
M by M+MP. Finally compute CP41,CP2,CP3 as in (2,5), but replace ALO[41:4],BEO[1:4]
by ALP[1:4],BEP[1:4].
Computation of the coordinates of the perturbing body at any time T:
Solve the following Kepler equation with respect to SP
T-TO = SP*CP1+SIN(2#OMP#SP)/OMP/2#CP2+ (1-COS (2#OMP#SP))/OMP/2+CP3;
(In the program the solution of this equation is performed by Newton's method,
taking as initial guess SP := (T-T0)/CP1-CP3/CP1/0MP/2).
for J :=1,2,3,4 do UP[J] := ALP[J]#COS(OMP*SP)+BEP[J]#SIN(OMP=SP);
XP14 UP[1]t2-UP[2] +2-UP[3] t2+UP[4]12;
XP2 2« (UP[1]+UP[2]-UP[3]+UP[4]);
XP3 := 2#(UP[1]«UP[3]+UP[2]«UP[4]);

2.1.2.3 Perturbing body given by ephemeris:

Lagrange interpolation coefficients N = 61f(a) , where n = NDEG, k running
from O to NDEG. In the program these coefficients are computed by recursion. At a
given instant T the coordinates FCT[1:3] of the perturbing body are computed by
Lagrange's formula; the program chooses the tabular values to be used for this pur-
pose.
2.1.2.4__Right-hand sides G[1:N] _of the differential eguations:
(For any value of the independent variable S and the corresponding array DEL[1:N]).
T 1= TO+CH#S+C2#SIN(2#0M+S)/OM/2+C3# (1-COS (2#0M#S))/0M/2+DEL[9] ;
for this time T compute the position XP1,XP2,XP3 of the perturbing body ac-
cording to section 2.1.2.2 or 2.1.2.3.
Perturbed elements: AL[J) := ALO[J]+DEL[J];
BE[J] := BEO[J]+DEL[J+4];
Parameters of the particle: U[J] := AL[J]#COS(OMeS)+BE[J]*SIN(OM«S);
Parametric velocities: DUDS[J] := OM*(-AL[J]#SIN(OM#S)+BE[J]#COS(OM%S));
Distance of the particle from the central body: R := U[1]t2+U[2]12+U[3]12
+U[4]t2;

(J := 1,2,3,4)
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Coordinates of the particle: X1 := U[1]12-U[2]t2-U[3]t2+U[4]12;
X2 1= 2#(U[1]»U[2]-U[3]»U[4]); X3 := 2«(U[1]»U[3]+U[2]wU[4]);
Computation of the perturbing force:
DEN1 := ((X1-XP1)12+(X2-XP2)12+(X3-XP3)12)11.5;
DEN2 := (XP112+XP212+XP3142)11.5;
in physical space: P1 := -MP#((X1-XP1)/DEN1+XP1/DEN2);

P2 := -MP+({(X2-XP2)/DEN1+XP2/DEN2);

P3 1= -MP»((X3-XP3)/DEN1+XP3/DEN2);

in parametric space: Q[1] := 2« ( U[1]#P1+U[2]*P2+U[3]#P3);
Q2] := 2#(-U[2)*P1+U[1]+P2+U[4]*P3);

Q3] := 2#(-U[3]*P1-U[4]#P2+U[1]#P3);

Q4] := 2#{ U[4]#P1-U[3]*P2+U[2]#P3);

Computation of SUM = E::qu'
SUM := Q[1]«DUDS{1]+Q[2]»DUDS[2]+Q[3]#DUDS[3]+Q[4]+DUDS[4];
if N=10 (companion of the second procedure) then
G[J]  := -(R*Q[J]+2#DEL[10]+U[J])/0M/4»SIN(OMS);
G[J+4] := (ReQ[J]+2#DEL[10]#U[J])/0M/4#COS(OM*S);
Computation of the perturbation of distance DR:
DAL2 := (2#ALO[1]+DEL[1])#DEL[1]+(2#ALO[2]+DEL[2])#*DEL[2]
+(2#ALO[3]+DEL{3] )#DEL[3]+(2#ALO[4]+DEL[4] )#DEL[4];
DBE2 := (2#BEO[1]+DEL[5])#DEL[5]+(2#BEO[2]+DEL[6])#DEL[6]
+(2#BEO[3]+DEL[7] )*DEL[7]+ (2#BEO[4 ]+DEL[8] )#DEL 8] ;
ALO[1]#DEL[5]+BEO[1]+DEL[1] +DEL [1]#DEL [S]+ALO[2] «DEL[6]
+BEO[2] #DEL [2]+DEL [2] «DEL [6]+ALO[3] *DEL[7]+BEO[3] *DEL[3]
+DEL [3] *DEL [7]+ALO[4 ] »DEL[8]+BEO[4] »DEL[4 ]+DEL [4 ] «DEL[8] ;
DR := (DAL2+DBE2)/2+(DAL2-DBE2)/2#C0S (2#0M*S)+DALBE*SIN (2#0M«S);
G[9] := DR;
c{10] := sum;

else (companion of the third procedure)

(J = 1:2:354)

DALBE

seml-major axis A of the osculating orbit:

A 3= (AL[1]12+AL[2]12+AL[3]12+AL[4]12+BE[1]12+BE[2]12+BE[3]12+BE[4]12)/2;
G[J]  := -A/Ci#(R#Q[J]+DUDS[J]#SUM/QM/OM)/OM/4#SIN(OM=S) ;
G{J+4] 1= A/C1#(R#Q[J]+DUDS[J] »SUM/OM/OM)/OM/4#COS (OM*S);
G[9] = SQRT(A/C1)#R-(C1+C2#COS(2#0M#S)+C3#SIN(2#0M*S));

(J 3= 1:2:3:4)

DEL[I]' = ¢[9]s (F = 1,...,N)
(where the accent means differentiation with respect to s).

Integration is performed by a Runge-Kutta subroutine.

T,X1,X2,X3,AL[1:4],BE[1:4] as computed in 2.1.2.4.

Velocitles of the particle in physical space (1f R#O):

if N=10 then V1 := 2/Re(U[1]#DUDS[1]-U[2)#DUDS[2]-U[3]#DUDS[3]+U[4]#DUDS[4]);
V2 := 2/Re(U[1]#DUDS[2])+U[2]+DUDS[1]-U[3]+DUDS[4]-U[4]#DUDS[3]);
V3 1= 2/Re(U[1]#DUDS[3]+U[2] #DUDS[4]+U[3]«DUDS[1]+U[4]#DUDS[2]);
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else compute V4,V2,V3 as for N=10, but with the factor
2/R#SQRT(C1/A) 1instead of 2/R.
1f N=10 then the left- and right-hand sides of the equation (1,97)

R#DEL[10] =

2#0Mt2# ((2#ALO[1]+DEL[4] ) #DEL[1]+ (2#ALO[2]+DEL [2] ) #DEL[2]

+(2#ALO[3]+DEL[3] )#DEL [3]+(2#A10[4 ]+DEL [4 ] )#DEL [4 ]+ (2#BEO[1]+DEL [5] ) #DEL [5]
+(2#BEO[2]+DEL[6] ) #DEL [6]+ (2+BEO[3]+DEL[7] )#DEL [7]+ (2#BEO[4 ] +DEL [8] ) #DEL [8] )
are computed and printed out as check.

2.1.3 Input and output. Because ALGOL 60 does not include input and output, the

following description refers to our experiments on a Control Data 1604-A computer

[8l.

At first the units of length, mass and time must be chosenj they are arbitrary. The

input is listed on punched cards in the following sequence, with the values being

legal ALGOL numbers (arbitrary signed or unsigned, decimal or exponent notation),
except for the boolean variable NEARCENTRE, where the value must be a plus (=false)

or a minus (=true) sign. Each value must be followed by a comma; the number of val-

ues per card, the length of the numbers, and the number of spaces are arbitrary.

Symbol used
in the program

N
NEARCENTRE

TO

[H

M
X1,X2,X3
v1,V2,V3

MP
NTAB

if NTAB=0O then

[xp1,XxP2,XP3

VP1,VP2,VP3
else

[NDEG

TBEG

DTTAB

TFL

input

Set =10, if companion of the second procedure is desired,
set = 9, if companion of the third procedure is desired.

Set true or false according to the rules outlined in the
list of symbols.

Initial time.

Value of initial energy, only to be set if NEARCENTRE:E;EQJ
Gravitational parameter of the central body.

Initial coordinates of the particle at time TO.

Components of initial velocity of the particle at time TO.
(Observe modification indicated in the list of symbols if
NEARCENTRE=true).

Gravitational parameter of the perturbing body.

Set =0, if the perturbing body is moving in a pure Kepler
orbit with given initial data.

Set =NTAB (as described in list of symbols), if the motion
of the perturbing body 1is taken from an ephemeris.

Initial coordinates of the perturbing body at time TO.
Components of velocity of the perturbing body at time TO.

e

Degree of the Lagrange polynomials for interpolation in
the ephemeris.

Initial instant of the ephemeris.
Step of the ephemeris.

Value of scallng factor.
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TAB[1,0],TAB[2,0],TAB[3,0]
§ Taken from the ephemeris.
TAB[1,NTAB],TAB[2,NTAB],TAB[3, NTAB]

DS Step of integration.
NOUT Set according to the list of symbols.
TMAX Approximate last time of wanted parti-

cle position.

Remarks:

a) Choice of DS: An appropriate step T 1in physical time is chosen, and DS com=-
puted from DS = %fr , where r 1is the medium distance expected during the un-
perturbed motion of the particle.

b) If initial data are of parabolic or hyperbolic type, the machine gives a red
light.

¢) If the information delivered by the ephemeris is not sufficient to carry out the
Lagrange interpolation, the machine gives a red light.

Therefore at least % NDEG tabular values should be available before the start of
particle TO and after its wanted end position TMAX.

For checking purposes some of the input data as well as some other important quan-
tities are printed out immediately in the following order.
1.) i1f N=10 (second procedure) then the basic rule of regularization is printed out
DT = ReDS,
else (third procedure) the corresponding rule
DT = SQRT(A/AO)#R«DS,

is listed.
2.) TO and M are printed out.
3.) Information concerning the particle (referred to as "satellite™): initial coor-
dinates and velocitlies and perhaps energy (different versions depending upon,
whether NEARCENTRE=true or =false), semi-major axis, eccentricity and period of

revolution corresponding to the unperturbed orbit.
4.) Information concerning the perturbing body:

if NTAB=0 (pure Kepler orbit) then mass, initial coordinates and velocities,
semi-major axis, eccentricity, period of
revolution,

else (ephemeris) mass, ephemeris adapted to the
unit of length used in the program.

5.) Step of integration DS and value of NOUT.

The results of the integration are listed as follows

1St column: physical time T.

2nd column: physical coordinates X1,X2,X3 of the particle.

3rd column: components of veloclty V1,V2,V3 of the particle. (If collision occurs,

the components indicate only the direction of velocity, because the
magnitude of the velocity is infinite.)
th

4% cotlumn: perturbed elements ALPHA[J].
Sth column: perturbed elements BETA[J].
If N=10 (second procedure), a 6" column 1s printed out containing in the first

(J = 1325314)
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line the quantity rW = ReDEL[10] of equation (1,97) and in the sec-
s ond line the right-hand side of that equation. This is the energy check.

2.,1.4 Description of the program NUMPER. We give a rough description of the parts

of the program. The following numbers of the parts correspond to the numbers on the
left-hand border of Appendix 2.1.

part 1: Declarations of the quantities under consideration. NFCT is later replaced
by 3.

part 2: procedure REGEL: computation of the regularized initial elements taking
into account the different modifications (NEARCENTRE = true or = false),
computation of the auxillary quantities C1,C2,C3.
The same procedure is used for computing the elements of the perturbing
body 1f assumed to move in a Kepler orbit.

* part 3: Read in of most of the data. Activation of procedure REGEL with respect to

: the particle. -
part 4: Some declarations; CS and SN are symbols for cosine and sine, VF is an
auxiliary variable.
r procedure LAINTAB determines the set of tabular values of the ephemeris to

be chosen for interpolation at a given time T and carries out this inter-
polation. We do not explain this procedure in detail because it 1s a
standard interpolation routine.

part 5: procedure RK1ST is the standard Runge-Kutta routine of fourth order.
H 1s the step.

part 6: procedure F is the computation of the right-hand sides G[1:N] of the dif-
ferential equations. This procedure runs until the end of part 11.

part T: Coordinates of the perturbing body if assumed to move on a Kepler ellipse.
This part includes the solution of the Kepler equation by Newton's method.

part 8: Coordinates of the perturbing body if an ephemeris is used; procedure
LAINTAB is activated.

part 9Q: Computation of the coordinates of the particle and of the perturbing force
in physical and parametric space.

part 10: Right-hand sides G[1:10] of the differential equations, if N = 10 (2nd

procedure).
part 11: Right-hand sides G[1: 9] of the differential equations, if N

procedure).

rd

9 (3

part 12: Read in of the remaining data concerning the perturbing body. Computation
of either the elements of the perturbing body (activation of REGEL) or the

: LAM[O:NDEG] .

. part 13: Computation of the output data: physical time, coordinates and velocities.
of the particle, values of the elements at the time under consideration,
as was explained in 2.1.3.2.

part 14: Integration loop.

part 15: Information if errors occur.
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Remarks:

For input and output the special procedures READ and OUTPUT and the declaration
format, which are not included in ALGOL 60, are used repeatedly as is the custom on
our Control Data 1604-A system. Details about these input - output facilities can be
found in the reference [8]. Appropriate adaptions must be made if the program 1is
used on another computer.

2.1.5 First numerical example: Perturbations of a highly eccentric satellite orbit
by the moon. {Appendix 2.2).

The following version of program NUMPER {cf. 2.1) was used.

N = 10 (companion of the second procedure (cf. 1.3.3)),
NEARCENTRE = true (start of the particle near the centre of the earth),
NTAB # 0 (motion of the moon given by ephemeris).

2.:1.5.2_ Configuration (Fig. 2.1):
Attracting centre = earth, at the origin of the x,,x, ,X; -system,
particle: unperturbed orbit = ellipse in the x, x; -plane with high eccentricity,

perturbing body = moon, orbit taken from the ephemeris (o].

2:1.2.3__Units:

Length:s 1 km, mass: 1 kg, time: 1 mean solar day.
The gravitational parameters are M = 2.965621833'1015, MP = 3.637460852-1013.

H = - 10'", corresponding to the semi-major axis 148 281.09165 .

(X1,%2,X3) = (10 000,0,0),

direction of initial veloeity (V1,v2,V3) = (0,0,1).

This initial position is the pericentre of the unperturbed orbit. The eccentriclty
is 0.932560518 and the period of revolution 6.58795532 .

2:1.5:5_ _Ephemeris of the moon:

The x,,x, -plane 1s the equator of the earth corresponding to the epoch 1966.0 .
The ephemeris glves XP1,XP2,XP3 with an accuracy of 7-8 decimals and with a time-
step of 0.5 days. The unit of length of the ephemeris 1s the mean radius of the
earth, thus TFL = 6 367.672608 .

We choose NTAB = 32, NDEG = 6, TBEG = -3, DTTAB = 0.5 .

The initial time TO = O is the date 243 8941.0 J.D. (= Jan. 4.0, 1966) of the

original ephemerils.

DS = 10"6 (approximately 45 steps per revolution),
NOUT = 1 ,
TMAX = 10 (approximately 1.5 revolutions).

2.1.5.7 Remarks:

For this satellite the influence of the moon is the most important perturbation.
The unperturbed orbit is well outside the atmosphere and in the interior of the
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100+

moon’s orbit

‘ 0/ A 8arth (true magnitude) 6
Xy \E -100 -200 -400
~-100+1
0 unit of lenght: 10 km
unit of time: 1mean solar day
(t =0 corresponds to 243 8941.0 J.D))
-300+
-Zw-.
- 100+
6
_ L, earth (true magnitude) ) )
X4 T unperturbed satellite orbit -300 -400
100+
moon’s orbit
2001
3001
X2y

Fig. 2.1. First example. Unperturbed orbits.
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moon's orbit. In Fig. 2.1 corresponding positions of the particle and of the moon
are indicated (step = 1 day of physical time).

The results are listed in Appendix 2.2. The perturbed orbit is plotted in Fig. 2.2
with the points indicating the equidistant values of S. The physical time corre=-
sponding to each point 1s indicated. From this plot the automatic regulation of the
step length performed by the fictitious time can be seen (near the peri- and apo-

centre the poilnts are much denser than elsewhere).

A smaller integration step does not pay off, because the error produced by the
ephemeris then becomes dominant. However, the integration with a smaller step would
improve the balance of the energy equation.

After the first revolution, the satellite has lost about 1.9% of its initial energy,
causing its pericentre to move closer to the earth.

2.1.6 Comparison with the classical method of Encke. In order to explain briefly

Encke's method, we introduce the following notations:

X, r = coordinates and distance of the particle in the perturbed orbit,

Xk, rxk = coordinates and distance of the partlcle in the unperturbed Kepler
orbit,

A X = X;= XiK , Ar=r- ) = perturbations,

$a, r = coordinates and distance of the perturbing body,

M ,Fi = gravitational parameters of the central and the perturbing body re-
spectively,

¢ = distance of the particle from the perturbing body.

The classical differential equations for the AXx; are

) (2,6)

«”}1

B = M (58 - TERR) - B (=
and the independent variable is the physical time t.
In the following examples either a constant step was chosen or an automatic step
regulation was put into operation. Integration was performed by writing the differ-
ential equations (2,6) as a system of six simultaneous equations of first order and
using the same Runge-Kutta method as in the program NUMPER.

2.1.6.1__Second numerical example:

Perturbations of a highly eccentric satellite orbit by the moon. Units: km, kg, day.
M = 2.9800083:10'%, M = 3.6656343+101>, Initial conditions: satellite on the
positive x;-axis at distance 10 000 km, initial veloecity parallel to X, -axis of
magnitude 750 000 km per day (eccentricity of the unperturbed orbit e == 0.89).
Moon on a circular orbit of radius 384 400 km in the X,,Xa =plane; initial posi-
tion on the positive X, -axis.

For t = 3,1841455 days (about one revolution) the following results were obtained.
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Table 2.1. Comparison of NUMPER with Encke's method for highly eccentric orbit.

number step length DS,

method of steps At resp. X4 Xa X3
NUMPER 2 DS = 2:1072 60.00 35 379.12 -33 888.55
8 5-10'6 80.98 35 400.52 -33 911.38
40 1-10’7 80.99 35 400.52 -33 911.34
200 210" 80.99 35 400.52 -33 911.34
Encke 16 At = 0.2 26.47 62 365.72 -37 286.08
constant step 64 0.05 15.58 22 144 .64 -36 560.63
319 0.01 84.03 35 439.95 -33 960.81
1593 0.002 80.99 35 400.74 -33 911.40
Encke 46 0.1523 At »0.0047 81.00 35 404.30 -33 915.00
regulated step 103 0.152 0.00119 80.99 35 400.64 -33 911.33
272 0.038 0.00059 80.99 35 400.50 -33 911.35
356 0.025 0.00040 80.99 35 400.52 -33 911.35

Conclusions: The Encke-method with constant step needs at least 1593 steps to ob~
tain the accuracy of 8 steps of the regularizing method and can therefore not be
recommended. With automatic step regulation the corresponding number of Encke-steps
is reduced to about 100. Although one step of the regularizing method needs about

3 times as much computing time as an Encke-step, the regularization does accelerate
greatly the computation of the orbit.

2:1.6.2_ Third numerical example:

Perturbations of an almost circular satellite orbit with high inclination. Units
and masses as in the second example. Initial conditions: satellite on the positive
X, -axls at distance 75 000 km, initial velocity parallel to x, ~axis of magnitude
200 000 km per day (eccentricity m 0.007). Moon as in the second example.

For t = 3.0176050 days (about one revolution) the following results were obtained.

Table 2.2. Comparison of NUMPER with Encke's method for a nearly circular orbit.

number step length DS,

method of steps At resp. X4 X X3
NUMPER 2 DS = 2°1077 -6.31 75 162.85 -7 502.45
8 5+10_¢ 4.37 75 171.71 -7 510.35
40 1°10" 4.34 75 171.72 -7 510.34
200 21077 4.34 75 171.72 -7 510.34
Encke 16 At = 0.2 4,33 75 173.26 -7 508.02
constant step 61 0.05 4,34 75 171.72 -7 510.33
302 0.01 4,34 75 171.72 -7 510.34
1509 0.002 4,34 75 171.72 -7 510.34

Conclusions: Because the unperturbed orbit is almost a circle, an automatic regula-
tion of the Encke-steps would not give an improvement worth mentloning. Therefore

a constant step was chosen, making the Encke-method as fast as possible. Four Encke
steps give about the same accuracy as one step of the regularizing method, and the
corresponding machine times are almost the same.

Remark: The program NUMPER will also be used in sections 2.2.5.2 and 2.2.5.3.
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2.2 The program ANPER ("analytical perturbations")

This program (Aggendix gég) computes the first-order perturbations of the ele-
ments o, 3; (j=4,2,3,%) (osculating Kepler orbit) and of the physical time t
according to section 1.5 (fourth procedure) of this report. It takes only into ac-
count the perturbations by a third body assumed to move on a pure Kepler orbit. The

perturbations are evaluated by double harmonic analysis.

2.2.1 The independent variables. Instead of the varlables s,s, used in the theo-

retical analysis of section 1.5, we introduce modified variables which are better
adapted to numerical computation. Let E be the eccentric anomaly of the particle
on its unperturbed orbit and E, the initial value of E . By taking (1,87) into
account, we have

E = E, + 2ws . (2,7)

Thus the definition of s, 1n section 1.5.2 is modified to read
G a,
s o= o (E-E)

a, is related to the mean angular velocity m of the particle by (1,84)(1,85);
therefore

s, = %(e-e.) . (2,8)

As can be seen from (1,129), the integrands { now have the period 2T in both of
the variables E and s, . This property still holds true if any constant is added

to s, ; thus instead of s, we may use the variable
E, = SwE+c (2,9)

where ¢ 1is a constant to be determined in the following. We introduce for this
purpose the mean anomalies m,m of our bodies as well as their initial values
m,, M, . We can write

Moo= e At o= e m e o m,+1;*7(5-esane)-f:im.

)

Mo (ﬁ.—%m,)-(:*-E‘—%esinE . (2,10)

e is the eccentricity of the particle's orbit, and Kepler's equation has been in-
serted. We choose now ¢ = ﬁi-—$§ me jthen (2,9)(2,10) are reduced to

E4 = %E -+ (mo-% m.) ) (2311)

A - E4—-,E;esinE . (2,12)
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As follows from the last equation (2,12), this cholce has the advantage that E,
is, apart from a pure periodic term, the mean anomaly of the perturbing body. As in
the theoretical section 1.5 the dynamic situation is determined by the two inde-
pendent variables E, E, , because any choice of E determines the position of the
particle and then any chosen value of E, ylelds by (2,12) the mean anomaly of the
perturbing body. With respect to either of the two variables E, E4 the fundamen-
tal period is 2T and is divided into 2N equal parts for performing the harmonic
analysis.

2.2.2 The elements. In order to facilitate the comparison of the regularized com-

putations with classical results, we introduce the elements corresponding to the
pericentres of the two orbits; however, the initial positions of the two bodles re=-
main general and are allowed to be different from the pericentres. From (1,76) and
(1,87) the coordinates of the particle at instant t= s= 0 are obtained as fol-
lows

(W), = (oLj)& cos % + (ﬁj)a sin -—E?—_!- ,

W = w=(o)e st (B cos §]

where (uj)k, H%)R are the elements corresponding to the pericentre of the oscu-
lating orbit at instant t = 0 (the subscript R 1s meant to signify "reduced to
the pericentre"). By solving (2,13) with respect to the reduced elements we have

) = (uy), cos%! - -:-, (u), sin%_l , (Bl = (u) sin%l + L (u), cos%ﬁ , (2,14)
and
(1,87) Y e (B)e = O

j-‘

The same reduction is performed for the perturbing body by introducing the reduced
elements

— —_ E. - E. = — . E. A4 =t £,

(&) = (F), cos%’- - —‘% (G;'), sln%! , Bl = (&), sm%! += (G@), cos%’- . (2,15)

ANPER computes the perturbations A, AB; of the reduced elements (ety)n , (Bs)a
according to the formulae {cf. fourth procedure, section 1.5.1.)

E E
_A . A E
Aoy = ——,wfoFj s dE BB = g [F ek
. .

It computes also the perturbation of time {ecf. (1,116))

E

Ot = 2= [(Ar+ £ Aa)dE

. 2a,

Any of the eight perturbations of the elements appears in the form of a double
Fourier polynomial with a secular term
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¢ (E~E,) + ﬁ%': [av,. cos(VE + nE,) + by, sin (VE + nE4)]

v=0 ne-N+4

(2,16)

the coefficients ¢, aQy,, byp are printed out. This formula is analogous to
(1,1282). The perturbation of time At appears in a more complicated form

¢, (E-E,) + ¢, (E cosE ~ E, cos E,) + ¢; (EsinE - E, sinE,)
N-4 _N- (2,17)
+ Z [av,, cos (VE + nE,} + by, sin (VE + nE.)]

Ve0 nz-Neq

As above, 2N 1s the number of grid points of the harmonic analysis. All these nine
perturbations vanish for t=0 , that is to say for E = E, .

ANPER performs also the summation of the Fourier-series for a given value of E ,
and the perturbed elements («jle+ Bo; , (B;), + AB; as well as the perturbed time
th-At are printed out. The coordinates of the particle - if needed - could be
computed by hand as follows

uj = [(oq)g+ Auj].cos% + [(Bi)x"' Aﬁ;]-Sin%' v (3=4,2,3%) i
the coordinates x; in the physical space are then determined by (1,44).

2.2.3 Rules for the user. ANPER is written in ALGOL 60. We do not describe this
program in detail as we did for NUMPER but restrict ourselves to recording the in-

and output specifications. Again the special procedures READ and OUTPUT, the decla-

ration format and furthermore the procedures BINWRITE and BINREAD for handling the

tapes are used. They are not included in ALGOL 60, but only defined on our Control

Data 1604-A system [8]; appropriate adaptions must be made if the program is used

on another computer.

2:2.3:1__Input:

Units of length, mass and time are arbitrary.

Before going to an electronic machine the user has to compute:

- Initlal coordinates and velocities of the particle at time t=0 1in physical
space, (ev. given by classical orbital elements),

- Initial position and velocities of the particle in parametric space as in the
second procedure (section 1.3.2),

- the value E, of the eccentric anomaly corresponding to the initial position
from the classical formulae of Kepler motion,

- initial values of the elements (o;)q , (B;)g from (2,14);

- the same work has to be carried out with respect to the perturbing body
(B @&, (Bida )-

The input is listed on punched cards in the following sequence; the values must be

legal ALGOL numbers, each of them followed by a comma. The number of values per

card, the length of the numbers, and the number of spaces are arbitrary.
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Symbol used in the program Symbol used in the underlying theory 2.2.1,2.2.2.

M M = gravitational parameter of the central body
(product of mass and gravitational constant).

EO E,. = eccentric anomaly of the particle at ini-
tial time t=0.

ALO[1]’ALO[2]’ALO[3]’ALO[A] (“ﬁﬂ = reduced elements of the particle at the

BEO[1],BE0[2],BEO[3],BE0[4] (B;)a pericentre of the unperturbed orbit.

M3 M = gravitational parameter of the perturbing
body .

ESO E; = eccentric anomaly of the perturbing body at

initial time t=0 .

ALS[1],ALs[2],ALS[3], ALS [4] (fﬂn = reduced elements of the perturbing body

BES[1],BES[2],BES[3],BES[4] (B e at the pericentre of the orbit.

JKMAX N, (2N is the number of points on the two or-
bits used for the harmonic analysis).

TF, TFT Scaling factors for the listing of the Fourier

coefficlents; every coefficient of the perturba-
tion of an element 1s multiplied by TF, every
coefficient of the perturbation of time is multi-

plied by TFT, when it is printed out.

(The largest coefficients should have the order
of magnitude 1011,)

I Summation of the Fourier-series: number of summa-
tions to be carried out.

E,E,c..,E vValues of E for which the summation 1s desired.
\__q'_——/

{I values)

b)

c)

The following information 1s printed out:
M,E0,ALO[1],AL0[2],AL0({3],AL0[4],BE0[1],BE0[2],BEO[3],BEO[4],

AO = seml-major axis of particle's osculating orbit at instant t=0

EXZ0 = eccentricity of particle's osculating orbit at instant t=0 ,

formula for computing the unperturbed Kepler time t, (denoted by T),
MS,ESO,ALS[1],ALS[2],ALS(3],ALS[4],BES[1],BES[2],BES[3],BES{4],

AS = semi-major axis of the orbit of the perturbing body,

EXZS = eccentricity of the orbit of the perturbing body,

formula for computing the Kepler time,

JKMAX,

equation (2,11) (with the numerical values of -é; and m, - é; m, ).
Investigation of resonance: {(c¢f. 1.5.2)

For any value of the subscript v (formulae (2,16)(2,17)) the value of V‘*"'é;
which 1s nearest to 0 is printed out (n 1is the second summation index and M ,

i] are the mean angular motions). However, the information 1is suppressed 1if

this minimum of |v+n-§}l is larger than for a preceding value of v .

Fourler-series of the perturbations:

In Appendix 2.4 the perturbations Auj,Ap,-,At of the elements and of the
time are denoted by D ALPHA 4,....,D ALPHA 4,D BETA 1,....,D BETA 4,DT.
Perturbation of the elements: after D ALPHA (or D BETA) the chosen scaling
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factor TF is printed out. It follows the secular term; in the list of the
Fourier coefficients the first and second columns indicate the values of v and
nh , while the third and fourth columns contain the cosine and sine coefficients
{cf. (2,16)).

Perturbation of the time: after DT the scaling factor TFT is printed out. The
secular terms appear in the form (2,17), and the periodic terms are printed out
according to the same pattern as for the perturbation of the elements.

d) Summation of the Fourier-series:

In the first column the chosen values of the independent variable E are listed
again., The second column contains the unperturbed values of the elements and the
Kepler time tx , the third column the perturbations of the elements and of the

time, and the fourth column the perturbed values of the elements and of the time.

2.2.4 Remarks. Concerning an appropriate choice for the number N wused for the

harmonic analysis we may give the following rough guess. Let a be the semi-major
axis of the orbit of the particle, g the minimal distance between the two orbits
and d the number of wanted significant decimals of the perturbations; then choose

at least
- —d
A v

where log is the Briggsian logarithm.

2.2.5 Pourth numerical example: Perturbations computed by four different methods.

Xy

orbit of
the particle

X3

orbit of the
perturbing body

(not in scale)

Fig. 2.3. Fourth example. Configuration.
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Central body: at the origin, gravitational parameter M = 1.
Perturbing body: ™M = 0.01. The orbit is a circle in the x,.X, -plane of radius

& = 18. Initial position (0,0,18), initial velocity (0, 0.23687784006 ,0).

The corresponding elements are o, = 3, &, =0, & =3, o =0, ‘_3.‘ - o,
Ba =3 B =0 B+ = -3 ana coincide with their reduced values (Zj)a »
(f;)a 5 therefore E, = o.

Particle: the unperturbed orbit is an ellipse with the semi-major axls a = 3, ec-
centricity e = 0.5, inclination 39.7° to the x,,x; -plane, start at the peri-

centre (E, = 0). Initial position (- % ,0,¥2), initial velocity (g—%ﬁ , f2_~3(__§

% ) . The unperturbed elements are o, = LS s Oy =0, o3 =1, oy =0,
Pa = 1s B =1, [3, = - -Lg s Pu=- 2 and colncide with the reduced ele-
ments (o)a » (B)a 3 furthermore the two parameters ¢-, T introduced in sec-
tion 1.6.3 are © =-%, T =£§ .

o o e e o e o s ot o e e ot ot o S T A B Pt b e o b 8 P i S o o b i ) o 0

Program NUMPER.

Input data: N = 10, NEARCENTRE = false, TO = O, NTAB = O, DS = 0.1 Y3 (correspond
ing to a step 0.1 of E ) (approximately 63 steps per revolution), NOUT = 1,
TMAX = 500 (about 15 revolutions of the particle, and about 1 revolution of
the perturbing body).

The purpose of this computational example 1s to discuss the goodness of the energy
balance {cf. 1.3.3, 2.1.2.6 and 2.1.3.2). In Fig. 2.4 the quantity

(1,97) rW - 4w*z([(¢j),+4TA«j] Do + [(B)+5 AB;] Ap;)

is plotted against E =2ws . At the end E = 96 we read for this quantity the
value 3.61°10°11, the corresponding value of rW is - 3.07681~10'5, and thus the
relative error of the energy check is about 10'6. This is a satisfactory result.

Program NUMPER.

Input data: N = 9, NEARCENTRE = false, TO = O, NTAB = 0, DS = 0.1 3 (correspond-
ing to a step 0.1 of E ) (approximately 63 steps per revolution), NOUT = 5,
TMAX = 500 (about 15 revolutions of the particle, and about 1 revolution of
the perturbing body).

The results of this computation are displayed in two ways. First, the perturbations

Ao, OB;, At corresponding to E = 80 (about 13 revolutions of the particle) are

tabulated in Table 2.3 under the heading NUMPER. Second, the perturbations Aoty

and AP, are plotted in Fig. 2.5 and Fig. 2.6 against E.
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Table 2.3. Comparison of special perturbations and first-order general

perturbations.

NUMPER ANPER

E =80 E =80
Ax, = 0.00072460 Axy, = 0.00073163
Ax, = =0.00255181 Axa = -0.00254940
Axy = 0.00169407 Ax; = 0.00169465
Asy, = 0.00033265 Ax, = 0.00031953
AB, = -0.00055131 AB, = -0.00055084
AP, = 0.00049547 AR, = 0.00049473
ARy, = 0.00045080 AR, = 0.00045364
AR, = 0.00137048 Ap, = 0.00136828
At = 0.021224 At = 0.021180

I - 001
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| -a 001

CALCULATED WITH PRBGAAM NUMPER: |

. - 0002

SECULAR TERM FRBM PRBGAAM ANPER: 2

SECULAR TERM FRBM (14149): 3
L --(C3

3
2

Fig. 2.5. Fourth example. Perturbation A, .

CALCULRTED WITH PREGAAM NUMPER: |

» 002
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SECULAR TEAM FABM (1,149): 3

BNE
WF THE

-a 001

Perturbation

AR,
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Program ANPER.

Input data: EO = 0, ESO = O, JKMAX = 13, TF = TFT = 1014

, I =1, E=80.

The second and third methods are used to compare the numerical and first-order ana-
lytical perturbations. Again the results of the third method are listed in Table
2.3 (under the heading ANPER); the corresponding plot in Fig. 2.5 and Fig. 2.6 co-
incides practically with the plot of the second method. Furthermore the secular per-
turbations are listed in Table 2.4 under the heading ANPER, and the secular pertur-
bations of Aa«, and AR, are plotted in Fig. 2.5 and Fig. 2.6 as straight lines.
Appendix 2.4 is a part of the results output by the Control Data 1604-A.

The results are listed in Table 2.4 under the heading (1,149) and plotted (for Awx,
and AB,) in Fig. 2.5 and Fig. 2.6. Because the ratio of the major axes is rather
small, the results of this rough computation have an acceptable accuracy; they co-
incide with the results of ANPER within a relative error of about 4%.

Table 2.4. Secular perturbations.

ANPER (1,149)

Ax, = 0.27595-10"2 E Ax, = 0.,19290+10"DE
Ax, = -3.77738.10-20 € Aa; = -3.66512.10-DE
Axy = 2.00678+10"2 E Ax; = 1.91096+10=2 €
A, = 0.60747-10"DE Axy, = 0.68200:10"DE
AB. = -0.72616+10"2 E AB, = -0.68200:10"2E
AB, = 0.66424-10"D E AB, = 0.68200-10"DE
APy = 0.20442-10"2 E AB, = 0.19290-10-2E
AP, = 1.41098-10"DE AB, = 1.35031:10"DE
At = 3.81647-10"4 E

+1.05457+104 E cosE
+0.76276+10% E sinE

2.2.6 Fifth numerical example. Convergence of the Fourier expansion in the case of

an ejection orbit.

2.2.6.1 Configuration: (Fig. 2.7)

orbit of the
perturbing body
(not in scale)

orbit of the particle: 1 = ejection orbit
2 = circular orbit

Fig. 2.7. Fifth and sixth example. Configuration.
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As described in section 1.6.4., The numerical constants appearing in formula (1,157)

were chosen as follows: {%— = 0.01, -%— = % . The same value ¢ = 60° was adopted.
Elements of the particle: «; =0, (J = 1,2,3,4), f, = —{g s Ba ='1é' s Ps =0,

By = 0.
Elements of the perturbing body: &, = -g- s &y =0, = % , &, =0, F‘ = 0,

B. = % s ﬁ, =0, B, =- % . (Start on the positive x, -axis).

2.2.6.2_ Fourler-series:

Program ANPER.

Input data:s EO = 0, ESO = O, JKMAX = 13, TF = TFT = 10%1, 1 = o.

In Table 2.5 the cosine-coefficients avn (multiplied by TF) of the Fourier ex-
pansion

c(E-E,) + E Z [a,n cos(VE+nE,) + by, sin(vE-l-nE.)]
of the perturbation Awx, are listed. A row corresponds to running values of v and a
fixed value of n . This gives a picture of the convergence of such a series.

2.2.6.3 Secular perturbations:

- e B e o o > S " = 42 4 A - -

They are, computed by ANPER,
Ax, = 3.80195232:10-6E , Ax, = -11.04974880+10-0E ;

the remaining secular perturbations A«;,Af; vanish.

Table 2.5. Ejection orbit. Cosine-coefficients of Awy, .

Y 0 1 2 3 4 5 6 7 8

-11 -1 0 0 0 o} 0 0 0

-10 0 0 0 0 0 0 0 0
-9 15 -4 1 0 0 0 0 0
-8 0 0 o 0 o} 0 0 o}
-7 -376 94 -25 5 0 0 0 0
-6 0 0 0 0 0 0 0 0
-5 8 974 -1 966 339 -12 -8 1 0 0
-4 o} 0 0 0 o] 0 0 0
-3 -200 422 27 926 343 -724 0 -1 0 0
-2 0 0 0 0 0 0 0 0
-1 -263 426 61 044  -10 564 881 -7 0 0 0
0 |11 090 045 0 0 0 o} 0 0 0 o}
1 | -8 753 885 251 765 -62 904 11 774 -1 173 37 -1 0 0
2 0 0 0 o} 0 0 0 0 0
3 | -2 35 625 180 234 -34 856 2 042 613 -59 3 0 0
4 0 0 0 0 0 0 0 o} o}
5 51 296 ~7 006 2 186 -533 71 2 -2 0 0
6 0 0 0 0 0 0 0 0 0
7 -1 322 252 -97 34 -9 2 0 0 0
8 0 0 0 o} 0 0 0 0 0
9 37 -8 4 -2 1 0 o] 0 0
10 0 0 0 0 o} 0 0 0 o]
11 -1 o] 0 o} 0 o] 0 0 0

P
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Table 2.6. Circular orbit. Cosine-coefficients of A, .

PN 0 1 2 3 4 5 6 7 8
-11 0 0 0 0 0 0 0 0
-10 0 0 0 0 0 0 0 0

-9 0 0 0 0 0 o} 0 0
-8 0 0 0 0 0 o} 0 0
-7 6 -2 1 0 0 0 0 0
-6 7 -12 4 -5 1 -1 0 0
-5 -442 170 -65 11 -8 -3 0 0
-4 ~700 1 253 =317 311 ~-60 5 -1 0
-3 30 025 -9 591 3182 1 085 37 15 o} 0
-2 71 948 =134 254 23 169 -1 182 245 -1 2 o]
-1 5 530 19 958 -9 002 -3 241 -73 -29 -1 0
0 | -3 040 890 -468 685 256 216 -44 503 1 729 -360 15 -3 0
1 2 386 433 -5 133 =19 228 8 782 3 181 71 28 1 0
2 o] 61 978 -124 618 22 047 -1 138 238  -11 2 0
3 3 983 384 -23 903 8 576 -2 953 -1 026 -36 -14 0 0
4 0 -519 1 079 -287 289 -61 4 -1 0
5 -2 709 304 ~141 58 -10 8 3 0 0
6 0 5 -10 3 -4 1 -1 0 0
7 23 4 2 -1 0 0 0 0 0
8 0 0 0 0 0 0 o} 0 0
9 0 0 o} 0 0 0 0 0 0
10 0 0 0 0 0 0 o} 0 0
11 0 0 0 0 0 0 0 0 0
Comparison with the rough method of section 1.6.4:
From (1,156)(1,157) one obtains
Ao, = 3.34114-10-6E , A&, = -10.93105-10-6E .

2.2.7 Sixth numerical example. Convergence of the Fourier expansion in the case of

a circular orbit.

The unperturbed orbit of the particle is a circle in the x,,X, -plane; the pertur-

bing body is as in the fifth example. -% = 0.01, % =% (as in the fifth exam-
ple).
Elements of the partlcle: «, = % s Oy = -;— s oy =0, o =0, B4 = % s

Ba = - % s Bs =0, Pe=0 (coinciding with the reduced elements (o;)q

(B;)g 3 therefore E, = 0).

2:2.7.2_ Fourler-series:

In Table 2.6 the cosine-coefficients of Ax, (computed by ANPER) are listed in the

same arrangement as in the fifth example.

2:2.7.3__Conclusions:

As can be seen from the two Tables 2.5 and 2.6 the convergence of the serles is not
sensitive to the eccentricity. We have also carried out numerical experiments with
the ratio a:& = 1:9 in the more classical case where the orbit of the particle is
in the plane of the orbit of the perturbing body. Also in this case the convergence
behaviour of the Fourler-series was practically the same for an ejection orbit as

for a circular orbit of the particle.



- 70 -

2.2.8 First-order perturbations of the orbit of the planetoid Vesta. The theory of
the general perturbations of Vesta was established in 1880 by M.G. Leveau [10] ac-
cording to Hansen's method. His results on the first-order perturbations by Jupiter
have been compared with the results obtained by our program ANPER (ef. [5]). Since
the set of elements used by Leveau 1s quite different from our regularized elements,
it was only possible to compare the distance of the planetoid from the plane of its

initial osculating Kepler orbit. The Fourier expansions of this distance as ob-

tained by ANPER agreed perfectly with Leveau's results.




e i

- 71 -

Appendix 2.1. Program NUMPER.

1: BEGIN

RBAL TO.H,H»Xl'XZ.XS.Vi.V?.V3.0M.C1.Cz.CS.MP H

INTEGER N.NTAB,NDEG,NFCT ; B00LEAN NEARCENTRE 3

ARRAY ALO,BEO(1:4)

FORMAT INF 3= '*(22H START FAR FROM CENTRE/Z/
23H INIYIAL POSITION X1 =,E18,10,4%,4HX2 =,E18,10,4X,4HX3 =,
E18.10/23H INITIAL VELOCITY Vi =,E18,10,4X,4HV2 3,E18.,10,4X,
4HV3 =,E18,10//18H SEMI-MAJIR AXIS =,E18,10,4X,14HECCENTRICITY =,
E18.10,4X,22HPERIOD OF REVOLUTION =,E18,10)'"* 3

FORMAT INFNEARCENTRE :z ''(18H START NEAR CENTRE//
23H INITIAL POSITION X1 2,E18.10,4X,4HX2 =,E18.10,4X,4KX3 =,
€18.10/36H DIRECTION OF INITIAL VELOCITY Vi 2,E18.10.,4X,4FV2 =,
E18.10,4X,4HV3 =,E18.10//9H ENERGY =,&18,10//
18H SEMI~MAJOR AXIS 5,E18.10,4X, 14HECCENTRICITY =,E18.10+4X»
22HPERIOD OF REVOLUTION =,E18.10)"'

2: PROCEDURE REGEL (NEARCENTRE, M,X1,X2,X3,V1,V¥2,V3,0M,AL,BE,C1,C2,C3,
L
VALUE M,X1,X2,X3,V1,V2,V3
REAL M,X1,X2,X3,V1,V2,V3,0M4,C1,C2,C3 ;5 ARRAY AL.BE ;
BOOLEAN NEARCENTRE 3 LABBL L
BEGIN
REAL R,V ; INTEGER K
R = SQRT(X1#X1L+X2#X2+X3eX3)
V 13 SQRT(V1aVL+V2#V2+4V3Iey3)
IF = NEARCENTRE THEN
BEGIN
OM 3= M/R/2=VeV/4 ;
IF OM<0 THEN GOTO L ;
oM = SQRT(OM) 3
END
IF  R2Z0 ~ X120 THEN
BEGIN
ALLL] 32 SQRT((R+X1)/2) ; ALL2) :m X2«AL[1)/(R+X1) 3
ALLS) 32 X3IwALIL1)/(ReX1) 3 AL(4) = 0 ;

e we

END
ELSE If R#0 THEN
BEGIN
ALL2) = SQRT((R-~X1)7/2) : ALl1) 2 X2%AL[2)/(R=X1)
ALL4) =3 XIwALI[21/(R=X1) 3 AL(S) iz 0 ;
END
ELSE
ALTL] $= ALI2) = ALI3] 2 ALI4) :3 @ ;
IF R%0 THEN
BEGIN

BEI(Ll] = ( AL{1]*VLi+AL[2)wV2+ALI3)*V3)/OM/2
Bel2] = (~AL[2)1%vi+ALILleV2+AL(4])0V3)/0M/2
BEIS] i3 (=AL{31#vi-AL[4)eV2+AL[2]*V3)/0M/2
BE[4] =z ( AL[4)wv1-AL[31wV2+AL[2)eV3)/0M/2
IF  NEARCENTRE THEN
BEGIN

REAL VC

VC iz 2¢M/R=4#IMe0N

IF  vC<0 THEN Govoe L

VC = SQRT(VC) ;

FOR K:=1 STEP 1 UNTIL 4 DO BEIK) := BE(K)/VeVC ;

e we we wa

END
END
ELSE IF V120 THEN
BEGIN
BEIL1) = SQRT((Vevi)wd/V)/0M/2 ; HE(2) = V2+BE(1)/(vevl) ;
BE(S) = VI®BE(11/(Vevl) ; BE(4) = 0 ;
END

QLSE



- 72 -

BEGIN
BE{2) = SQRT((V-V1)*M/V)/0M/2 i BEl1] = V2+BE[2])/7(Vv-V]y) 3
£ DB&(4) '3 VI®BE{2])/(V=VL) } BE(3) 3 0 ;
N H
ClL = ALIL)®AL{L11+ALI2)wAL(2)¢AL(3)*ALI3)+AL[4])oAL(4) 3
C2 := BE(1)*BE(1)+BE(2]1#BE(2)+BE(3)*BE(3I+BE[4}+BE(4)
Ci :3 (Ci1eC2)/2 ;
c2 = C1-C2 ;
€3 :2 ALILI*BEILI+ALI2]1«BE(2)+AL[3}*BE(3)+AL(4])#BE(4]) 3
END REGEL

READ(N,NEARCENTRE,TO0) ;
IF N210 THBEN OUTPUT(S1,''(26HLREGULARIZATION DT = R#DS////)'")
ELSE OUTPUT(51,''(15H1REGULARIZATION,2X,
20HDT = SQRT(A/ZAQ)*R*DS///7/)'")
IF  NEARCENTRE THEN
BBGIN
READ(H)
IF H>0 THEN @O0TO INERROR
OM i= SQRT(~H/2)
END
CUTPUT(5L,'*(5H TO0 =a,E18,10//7//7)'',T0)
READ(M, X1,X2,X3,Vi,V2,V3) ;
CUTPUT(51,''(13H CENTRAL MASS//4H M =,E18,10//7/7)'',M) 3
REGEL(NEARCENTRE, M, X1,X2,X3,V1,v2,V3,0M,AL0,BE0,C1,C2,C3, INERROR) ;
CUTPUT(51, ' " (10H SATELLITE/Z)'') 3
IF  NEARCENTRE THEN
CUTPUT(S1, INFNEARCENTRE, X1,X2,X3,V1,V2,V3,H,C1,SQRT(C212+C3*2)/C1,
3.1415926536+C1/0M)
ELSE
CUTPUT(51, INF,X1,X2,X3,V1,V2,V3,C1,SQRT(C2+2+C3+2)/C1,
3,14159265356«C1/70M)
READ(MP,NTAB) ;
CUTPUT(51,''(///7/16H PERTURBING MASS//4H M =,E18,10/)'',MP)
IF  NTAB#0 THEN READ(NDEG) @LYE ND:G :a 0 3
ANFCT =2 3 3

BEBGIN
REAL XP1,XP2,XP3,VP1,VP2,VP3,0MP,CP1,CP2,CP3,TBEG,DITAB,TFL,
DS, TMAX,S,CS,SN,T,R,VF 3
INTEGER 1,NOUT,NOUTI 3
ARRAY ALP,BEP(1:4),TABI1:NFCT,0:NTAB),LAM[O:NDEG),DEL[1IN]),
FCT{13NFCT),AL,9E€,U,NUDSI114) 3

PROCEDURE LAINTAB(T,.FCT) 3

VALUE T 3 REBAL T ; ARRAY FCT 3

COMMENT GLOBAL: NDEG,NFCT.NTAB,TBEG,DTTAB,LAM[O0:NDEG),
TAB{L:NFCT,0:NTAB),0UT 3

BEGIN
INTERGER N,L.1,J 5 REBAL P,K,SS 3
ARRAY S[1:INFCTI,MY[O:NDEG)
P is (T-TBEG)/DTTAB 3} N = P ; K s NDEG/2 3
L % N-K¢(K-ENTIER(K))*SIGN(P=-N) 3
IF  L<O v LeNDEG>ITAB THEN GOTO ouT 3
IF P=N THEN
FOR 1:=21 STEP 1 UNTIL NFCT DO FCTILl) :3 TABELI,N])

ELSE
BEGIN
FOR 1:31 STEP 1 WUNTIL NFCT DO SI(I) s 0 3
SS (s 0 3
FOR J:s0 STEP 1 UNTIL NUEG DO
BEGIN

MYLJ) 3 LAALJ)IZ2(P=L=y)

FOR [:=21 STEP 1 UNTIL NFCT DO
SUL) 3= SUI)eMY[JU)eTABII,L*J)

SS 1z SSeMY{J) 3

GND
8 DVOR I:z4 STEP 1 UNTIL NFCT DO FCT{l) s3 S{1)/SS 3
N H

END LAINTAB
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5: PROCEDURE RKLST(X,Y,N,H,F) 3
VALUE N,H 3 REAL X,H 3 INTEGER N
ARRAY Y ; PROCEDURE F 3
BEGIN
REAL XI ; INTBGER K,J ; ARRAY Y1,Y2,Z{1:N},A{115] 3
Al1l) 2z A[2]) = A[5] t3 H/2 ; AL3) 3 A{4) 1= H 3
Xl =3 X 3
FOR K:s1 STEP 1 UNTIL N DO VYilK) = Y2(K) = Y(K] ;
FOR J:=1 STEP 1 UNTIL 4 DO
BEGIN
F(XI,Y2,N,2)
Xl = X*AlJ) ;
FOR K:s1 STEP 1 UNTIL N DO
BEGIN
Y2IK) 3 YIKI*A[JI*ZIK]) ;
YLIK) 33 YLIKI®A[J+1)eZ[K}/3
END
END
X 3 X+H ;
FOR K:= STEP 1 UNTIL N DO YIK] 3= Yi(K) ;
END RK1ST 3

6: PROCEDUYRE F (S,DEL.,N,G) ;
VALUE S.N ;i REAL S ; INTEGER N ;3 ARRAY DEL.G 3
COMMENT GLOBAL: T0,0M,C1,02,C3,NTAB,CP1,CP2,CP3,ALP,HBEF,
ALO,BEQ,LAINTAB
BEGIN
REAL CS,SN,T,XP1,XP2,%P3,R,X1,X2,X3,DEN1,DEN2,P1,P2,P3,
SUM 3 INTEGER I 3 ARRAY AL,BE,U,DUDS,GCl1:4) 3
T i TO+C1#S+C24SIN(2e0M*S)/0M/2+CI*(1-COS(2+0MeS))/CM/2
+DEL(9) 3
IF NTAB8=0 THEN
7: BEGIN
REAL SP,S5P1 ; ARRAY UPI[1:4) ;
SP1 := (T=T0)/CP1~CP3/CP1/0MP/2
LOOP: SP := SP1~(CP1#SP1+4CP2¢SIN(2+0MP#SP1)/0MP/2+CP3»
(1=COS(2#QMP*SP1))/0MP/2~T1+T0)/(CP1+CP2#COS(2#CMP*SPY)
+CP3*SIN(2%JMP#SPL))
IF  ABS(SP-SP1)>w=9/0MP/2 THEN
BEGIN SP1 :=a SP ; QOTO LOOP END
CS := COS(OMP#SP) 3 SN = SIN(QMP#SP) ;
FOR 1:=21 STEP 1 UNTIL 4 DO
UPLT)] := ALPUI]«CS+BEP[1)*SN ;
XP1 = UPI1]#UP(1)~UPI2]2UPI2]1~UPL3]1oUP(3)+UP{4])%LP(4) }
XP2 = 2#(UP(11«UP(2)~UP(3]1*UP[4)) ;
XP3 3 2« (UP{1]#UP(3)+UP(2]~uP(4))

END
ELSE
8: BEGIN
LAINTAB(T,FCT) 3
XP1 := FCT(1) ; XP2 t= FCT(2) 3 XP3 :=z FCT(3} 3

END

9: CS := COS(OM*S) 3 SN i3 SIN(OM*S) }
FOR i=1 STEP 1 UNTIL 4 DO
BEGIN

ALCI) = ALOLTII+DELILY 3 Be(I) = BEOLI}+CEL(]+4) 3
ULL) 3= ALLI)*CS+BE(])eSN ;
DUDSIL) 3= OM*(~AL(I)wSNeBE[1]1%CS) ;

END

R = Ul1)«Ul1)eUl2)oU(2]¢U[S)2U(3)eU[4)eu(4] ;

X1 82 Ul11+2Ul1)~U(2]12U12)~U(3}*ul3)eUl4)sUl4)

X2 = 2«(UlL]«UL2]~Ul310U(4)) ;

X3 i3 2#(UlL]1+U(3)+Ul2]0U(4))

DENY := ((X1=XP1)*(X1=XP1)+(X2-XP2)#(X2~XP2)+(X3=XP3)
*(X3=XP3))11.5

DENZ = (XPLwXPL+XP2eXP2+XPI*XP8)*1.5

PL 33 ~MP«((X1=XP1)/DEN1+XP1/DLEN2) ;

P2 3= «MP#((X2=XP2)/DEN1+XP2/DEN2) 3

P3 3 =MP#((X3-XP3)/DENL+XP3/0LEN2) 3
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QU1) 3= 2«( U[L1#P1+Y(2]1#P2U(3])*PI)
Ql2) = 2«(=U[2)1eP1+[11#P2+U[4]*P3)
QL3) 2 2«4(=U[I)*P1=~Ul4)1wpP2+U[1]*P3)
Ql4) = 2=( J{41*P1~U(3)#p2+U[2])*P3) ;
SUM := Ql11#DUDSI11«Q(2)#DUDS(2)+Q(31«DUDS{3I1+Q(4)*DLDSI4] }
IF N=10 THEN
BEGIN
REAL DAL2,DBE2,DALBE,DR ;
FOR I:=1 STEP 1 UNTIL 4 DO
8EGIN
G(IJ t= (R*Q{[)s2eDEL[10]1«Ul]1])/70M/4
G{l+41 = G[I]»CS
GlI) := «GlI)*SN )
END
DAL2 t= (2«ALO(L1}+DELIL))I*DELIL}+(2+ALO[2)+DEL(2)})*DELI2)
+(2«ALOI3)+DELL3))*DELIS]+(2%ALO(4)+DELLA))*DEL(4] ;
DBE2 t= (2+BEO[11«0ELISI)*DELIS)+(2+BEOI2)+DELI6]))*DELLSG)
*(2%BEO{3)*DEL[7))*DEL(7)+(2*BEQL4)+DEL(B))~DEL[8) 3
DALBE := ALQO[1!+DELI{S)+BEO(1)+DEL(L)+DELI1]*DELI(5]
+ALOI2)«DELI6]1+BEQI2]1#DEL(2]¢DEL(2)+DELL6]
+ALO(3)#DELI7)1+REQ(3)wDEL(31¢DEL{3I)#DEL(7])
+ALOC4)#DELIBI+BEQ(4]*DEL(4)*DELLA)*DELIB)
DR i3 (DAL2+DBE2)/2+(DAL2-UBE2)/24C0S(2#0VeS)
+DALBE*SIN(2%0M#*S)

e ws we

G(9) = DR 1
G{10) := SuUm ;
BND
ELSE
BEGIN
REAL A

A iz (ALILIZALILI+ALI21*AL{21+ALI3)=ALI3)+ALL4InAL[S)
+BE[1]*BE[11+BE(2)+BE(2}+BE(II+BEI3I)}+BE(4]1#+BE(4]))/2 3
FOR I:=z1 STEP 1 UNTIL 4 DO
BEGIN
GLI) 2= A/CL*(R#QLI}+DUDSII}*SUM/OM/ON)/0M/4 }
G(I+4) := G(I]1#CS
GLI) 3 «GII)#»SN 3
BND
G{9) 3= SORT(A/C1)#R=(C1¢C2+#COS(2+40M#S)+CI¢SIN(2eCM*S)) 3
END
END F

NTAB30 THEN

IN

READ(XP1,XP2,XP3,VP1,VP2,VP3) }

REGEL( FALSE ,M+MP,XP1,XP2,XP3,VP1,VP2,VP3,0MP,ALP,BEF,
cP1,CP2,CP3, INERROR) 3

QUTPUT(51, INF,XP1,XP2,XP3,VP1,VP2,VP3,CP1,SOQRT(CP2¢2+4CP32)/
CP1,35.1415926536*CP1/IMNP)

ELSE
N

READ(TBEG,DTYTAB, TFL) 3
FOR I[t=0 STEP 1 UNTIL NTAB DO
READ(TABI(1,1),TAB(2,1),TABL3,1}) ;
QUTPUT(51,' " (?7H NDEG =,13//10Xs1HT,17X,2HX1,18X,2HX2,18X,
2HX3/7)* ' ,NDEG) 3
FOR [:=0 STEP 3§ UNTIL NTAB DO
BEGIN
TAB(1,1) = TFLe«TAB{1,I]
TABL2,1) := TFL*TAB(2,]]
TAB(3,1) = TFL«TAB(3,1)
OUTPUT(51,'*'(1X,E18,8,3E20.10)' ', TBEG+1«DTTAB,
TABIL,1),TABL2,11,TABI3,]1))
END
LAMIOD) = 1 3
FOR [:=0 STEP 41 UNTIL NDEG-1 DO
LAM[1+1] = =LAY[I}*(NDE3=1)/([*+1) ;
}
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READ(DS,NGUT, TMAX)

OUTPUT(S51s''(///7/22H INTEGRATION STEP DS =,E18,10/7H NOUI =,14/
1H1.10X.1HT.16X'8HX1.X2.X3,11X.BHV1-V2.V3.14X.5PALPHA;1EX.
4HBETA/) ' ',DS,NJUT)

S =2 0 ;

FOR I:=1 STEP 1 WUNTIL n~ DO DeL{l) =0 3

TR3:

T 1= TO+CL¥S+C24SIN(220M*S)/0M/2+C3*(1-COS(2+#0M*S))/0M/24D0ELIY)

CS = CUS(OM®*S) § SN = SIN{(OM*S) ;

FOR I:=1 STEP 1 UNTIL 4 DO

BEGIN
ALLI) = ALOCID+DELII) ; BE(1) := BEQIIN+DELLI+4] }

UEI) ¢= ALITI)#CS+BEII]#SY 3
DUDS(I) := OM#(-~ALII]+SNeBE[]]#CS) ;

END

R $= ULL)eUl1)+Ul21#U[21+U(3)eU(3)+U4]1*0(4) ;

X1 = Ul1l«Ul1)-UL21#2U(2)=UI31#Ul3)+U[4)0U(4) ;

X2 1= 2«(U(1)1+U(2)1~U(31+U(4])) 3

X3 = 2#«(Ul1)*«U{3]+U[2]1~U(4])

VF = IF R=0 THEN 1 ELSE IF Ns10 THEN 2/F EUSE
2/R/SQRTCCAL{LI*ALILI+ALI2)«ALI2)+ALI3IwALI3)«AL4]xALL4)
+BE{11%BEI11+BE(2)+BZ[21+BRB[31#BE[3)+BE[4)#BE(4])/2/C1)

Vi = VF*(UIL1]1*DUDSI{1)~U(2]1+DUDSI2}~U[3)*DUDSI3I+Ul4]+DLDS(4])) ;

V2 := VFo(UI1)*DUDS[2)+4{2]#DUDS[11~-U{31#DUDS(4]1~Ul4)*DLDSII])

V3 s VFo(ULL1]*DUDSI3I+Ul2]+DUDS{4)+U[3)eDUDSI1)+UI4)*DLDS(2])

IF N=9 THEN

0UTPUT(51:"(/5E20.10/20X.4520.10/20X.4E20.10/60X.2E20.10)".
T.Xl,VI.ALlll.BElll-X2.V2.AL[2).BE(2].x3,V3,AL131.8E(6l.
AL{4],BE(4))

ELSE
0UTPUT(510"(/6520-10/20X;5520.10/20X:4520.10/60Xi2520.10)"o
Tlxi'vliALlllUBEll’!R'DEL[lO’IXZ;VZIAL(Z]lBE[Z]nZ'OM‘UP'
((2'&L0[1]*DEL[1|)*DEL(i]‘(2*ALO[2]*DEL[2])'DEL[Z]*(?*ALO(s)
‘DEL(s])*DEL(3l‘(zilL0[4)*UEL(4l)'DEL(4]*(2'850[1)*DEL[5])‘
DEL[5]‘(2'BEU(2]‘DEL[6])ﬁDELlﬁl*(Z'BEO[3]’DEL(7])'DEL(7)*(2'
BEU[4"DEL[8))'OEL(81)oXS:V3aAL[5]nBE[3)nAL[4l'BE[4]) i

IF R=0 THEN

OUTPUT(51,'"'(
57H (COLLISION, Vi,V2,V3 IS THE DIRECTION OF THE VELCCITY))

.
s

vy g
NOUTI := 0 ;
: INT:

RK1ST(S,DEL,N,DS,F) 3
NOUTI = NOUTI+1
IF  T<THMAX  THEN

BEGIN
IF NOUTI=NOUT THEN @0TQ TR3 ELSE GOTO INT
END
ELSE GOTO ENDQFPR
END

: INERROR: QUTPUT(51,''(20H ERROR IN INPUT DATA)'') GOTQ ENDOFPR
CUTSE QUTPUT(51, "' (23H TABLE NOT LARGE ENOGUGK)'') 3
ENDCFPR: END
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Output of program NUMPER.
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First example.

0
0 V3 = 1.0000000000E 00

PERIOD OF REVOLUTION =

6.9879553214E 60

1,046047A4110¢+02

2.,36727724220-02

0
0

8.5196584167F 03
~1.1284299674F~04
7.5452877411¢ 03

4,1081910175F 03
2.,8376700312F=n4
1.4939919542F g4

0
7.570497/8128 05

~2,%9720152136 05
«3.29278066596-03
A.5857504854€ 05

-3,7771411557€ 05
A,6%518038437€-02
4,.69179668983E 05

Mz 2,9656218330F 15

SATELLITE

START NEAR CENTRE

INITIAL POSITION X1 = 1.,0000000070F 04 X2 = 0 X3 =

CIRECTICN OF INITIAL VELOCITY wvi = 0 v2

ENERGY = -1,0000000000E 10

SEMI=MAJOR AXIS = 1.4828109165E 05 ECCENTRICITY = 9,3256051803E~01

PERTURBING MASS

M ® 3.6374408520F 13

NDEG = 6

T X1 X2 X3
~3.00000000€ 00 1.9809297145€ 0% 2.8849105617€ 05 1.1473066829¢ 05
~2.50N00000F 00 1.5674343871E 05 3.0921744345¢ 05 1.2652%34907€ 05
~2.00000000E 00 1.1298101015£ 05 3.1731274704€ 05 1.3640116991E 05
~1.50000000E 00 6.7444433387F 04 3.245n251803E 05 1,44168832961€ 0%
~1.N0000000E 00 2.0828555217E 04 3.2659449%88E 05 1.4966976950€ 05
~5.00000000E-01 =2.6130266695F 04 3.234R921755E 05 1.5278764309€ 05
] ~7.2672082444E n4 3.1518757452E 05 1.,5344842921€ 05

5.00000000E-01 ~1.1803349729% 05 3.0179443%599E 05 1.516267%269E 05
1.00000000E 00 ~1.6146903501% 05 2.8351799938E 05 1.4734699536E 05
1.50000000F 00 ~2.02271826465% 0% 2.606A435234E 05 1.40682084392€ 05
2,00000000F 00 «2.3979272419% 05 2.3%462802952€ 05 1.3175484477€ 05
2,50000000E 00 ~2.7345631254F 05 2.0287942360E 05 1.2072%908468E 05
3.N0N00000E 00 ~3.0277291166% 05 1.6894927374E€ 05 1.077954%5139€ 05
3.%0000000E 00 =3.2734641613< 0% 1.32412568714€ 05 9.3192588785%E 04
4,M0000000F OO0 «3,4687808020% 0% 9.33772146407E 04 7.7168843714E 04
4,50000000F 00 ~3.61166169655 05 5.3943171774E 04 5.9990900672E 04
5.00000000F 00 -3.7010285430= 05 1.37239442018€ 04 4,1934034149€ 04
5,.50000000€ 00 ~3.73668808277 05 ~2.753R494525€ 04 2,327%868301E 04
6.00000000F 00 -3.71926059N06% 05 -6.8113051746E 04 4,291308291%€ 03
6,50000000€& 00 -3.6500969047% 05 -1.0763706827€ 45 «1,4751815204€ 04
7.00000000€ 00 «3.5312028419F 05 ~1.4569969756E 05 -3.3566171797€ (4
7.50000000E 00 -3.36515364801< 05 ~1.8193034951€ 05 ~5.195767%5864E 04
8.30N00N00E 00 =3.1550162R14¢ 05 =2.156n147311F 05 ~6,9727428678E 04
8.50000000E 00 =~2.9042811491F 05 -2.4463056227E 05 -8.6573450416E 04
9.00000000F 00 ~2.6167888178% 05 «2,7458065249€ 05 =1,02234153980€ 05
9.“0n0N0GOFE 00 -2.79667604507 05 -2.9914130/85€ 05 -1.1685628018€ 05
1.00000000F 01 ~1.9483167742= 05 -3.2n12832811€ 05 ~1.2956154260F 03
1.05000000E 01 ~1.5762703606% 05 ~3.372R356403E 05 ~1.4152083600E 05
1.10000000E 01 -1.1852373147E 05 -3.5047467541E 05 ~1,5141769563¢ 05
1.15000000F 01 ~7.8001123993% g4 ~3.59%59425472E 05 ~1.5955568948F 05
1.70000000¢ 01 ~3.654394%7425 04 ~3.56457952872E 05 ~1.6585867290F 05
1.75000000€ 01 5.3619751314F 03 -3.6541120406E 05 -1,7027071226E 0%
1.30000000€ 01 4.7233529675E 04 ~3.6211233575€ 05 ~1,72755860842E8 09

INTEGRATION STEP DS & 9.9999999993F-07

NOLT = 1

T X1,X2,X3 V1,V2,V3 ALPHA
0 1.0000000000E n4 0 1,0000000000¢ 02

0
0
0
1.00000002926 02
~7.756%53%7193E-08

6.1478988576E-07
6.3601542619E-08

1.0000001471E 02
-7.6575866379E-06
3.9523731444E=06
4.887292%52226-06

BETA

0
0
5,3%331503183€ 02
0

-6.,4986%2042%€-05
-6,7277181532F-06
5.3531501%509¢F 02
-4,15210899746E-07

-1,7635229444E-04
5.8874266%18E~-05
5.353149008%8E 02

-4,0992213733E-05

oo

«1,7408363416€ 08
«1,7408238294E 08

«4,3347483410E 08
~4,3347309170E 08
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4,2333763423E-02

6,9031528642E~-02

1,06193672296-01

1,5603883600E-01

2.205323%967e-01

3.0134695368E~01

3.9682513035E~01

5,1697206880E-01

6,5139544048E-01

8,0533258454E-01

9.8162527602E~01

1,1787262304E 00

1.3507094644E 00

1,6192881669€ 00

1.8£2849n244E 00

2.1154394368E gg

2.3868559989E 00

2.6627987806E 00

2,9445659929€ 00

3,2294980449E 00

3.5148355435€ 00

X1,X%2,x3

~3.1463198764E 03
4.3665715308F=n3
2.2036246450F p4

~1.3099023900F 04
2.2852822876F =02
2.8692572818F n4

«2.555118R293F 04
8,5246R19986F=02
3.4775982740F 04

-4.0254143891F 04
2.5960288007E-01
4.0164989972F né

«5.6914240676E 04
6.8200705971€-01
4.4751959511F n4

~7.5198597444F g4
1.5747478q97F no
4.84452490896F 4

-9.4741705887¢ g4
3.2635977074F g0
5.1171038485F n4

~1.1515261907% @5
6.2945416400F 00
5.2874824586F 04

~1.3602264791F 05
1.1504053072F 01
5.3522553828F 04

-1,5693341501€ 05
2.0080443553F n4
5.3101352681F n4

=~1.7746509534F 05
3.3183233779F nt
5.1619735748EF n4

=1.9720478604F 05
5.2737316217F 0t
4.9107740127F 04

-2.1575480909F 05
8.1097468275F 01
4.5616336252F n4

«2.3274071063F 05
1.2085091414F 02
4.1216481975F 04

=-2.4781901390F 05
1.7686454368F 02
3,5998564953F g4

-2.,6368433511F o5
2.5322334879 0?7
3.0969701010F 04

~2.7107597282F @5
3.5520474499F 02
2.3552541774F n4é

~2.7878371585F 0%
4.8868399181F 02
1.6582927969F o4

~2.8365305941F 05
6.6207953395F 02
9.3084243883F n3

~2.8558917169F 05
6,8230081973F 02
1,8841885892¢ 03

~2.8456061709€ 05
1.1573548191F 03
-5.5282715005F 03
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v1.¥2,V3

~3.8780140977E 0%
3.7920544392E-01
3.1994550439€ 05

~3,5635489788€ 05
1.9507255090€ 00
2.01262863885E 05

-3.1548490122¢€ 05
2.3787313124€ 00
1.3336963780E.05

=2.7668964238E 05
4.7175635723& 00
8.80095050408 04

-2,4213127869E 05
3.5103003506€ 00
5.7374199254E 04

“2.12146045458 05
1.3631388166E 01
1.5999801978& o4

=1.8614744640E 05
2.n875882024€ 01
2.0637516361E 04

«1.6343916614E 05
3.1190631174€ 0t
9.3099945430€ 03

=1.4339438384E 05
4.5599334987€ 01
7.7730614666E 02

~1.2549288376E 0%
5.4271549711¢ 01
=3.7619952660E 03

=1.093144A283E 05
3.5055629731E 01
~1.01840814813E 04

-9,4522093062€ 04
1.16%4705977€ 02
=1.4820120702E 04

~3.0843882491E 04
1.5125282840E 02
-1.7953323553E 04

~5,80%582465308 04
1.9AR2556943€ 02
~2.0415542265E 04

~5,5982760309¢ 04
2.5161973361€ 02
«2,2332740797€ 04

~4,44A3955414E 04
3,3744388604€ 02
~2.3796393374€ 04

~3.3371126760E 04
4.2648019430E 02
«2,4870947480E 04

=2.25925784726 04
5.4722992306E 02
«2.5590993016€ 04

~-1.2026150331E 04
A.35R4669490E6 02
=2.5991029140E 04

=1.5902886795E 03
B.A730544632€ 02
-2,6066854523E 04

9,80507465346 03
1.0623027307€ 03
«2,5837224282E 04

ALPHA

1.0000004747€ 02
~4,6251024858E~05
1.7036176582E-05
4,3478829120E-05

1.0000011761E 02
~1.6853169315E-04
8,287856343%E-05
2,1309627434E-04

1.00000245245 02
~4.7057041134E-04
3.4897996243E-04
7.54498327%6E-04

1.0000044338E 02
-1.1005436888E-03
1.2071982095€-03
2.1525807783E~03

1.000006%721E 02
-2,2569357878E-03
3.5006221156E~-03
5.2433816838E-03

1.0000102714E 02
-3.9870772898E~93
9.0077266332E-03
1.0703%13385E-02

1.000012946pE 02
~6,6103997526E~03
2.0196145814E~02
2.0388659841E-02

1.0000106760E 02
-1.0505089491E~02
4.0577924500E~02
3.7053640874E~02

9.9999478247E 03
=1.60%9686132E~02
7.4760431327E~02
6,4467256375E-02

9.99955873%6€ 01
~2.3304175793E~02
1.2854542601E6~01
1.0555167743E~01

9.9538803337€ 01
-3.17127408842€-02
2.06885385680E~01
1.6070235274E~-01

9.9973443209E 01
~4,2958893015E~02
3.,2126768591E-01
2.4611983571E-01

9.9950228864E 01
~5.5176445805E~02
4,7207897777E~01
3.5421124942€E~01

9.9907049141€E 01
~7.0407667946E-02
6.6524830656E~01
5.1381689173E-01

9.9835071503E 01
-8,8270856650E~-02
9.0159280014E-01
7.3826583721E-01

9.9728694705€ o1
~1,0678563443E-01
1.1804138994E 00
1.0271045249E 00

9.9579603274E 01
~1.2464515260€-01
1.4949881039E 00
1.3853431532€ 00

9.9341852353E 01
~1,4247033049E-01
1.8237346995€ 00
1,8849901578€ 00

9,9023740706E 01
-1.5573174270E~012
2.1520847267E 00
2.4808447080E 00

9.8%37255144€ 01
~1.6257759906E=01
2.4131820785€ 00
3.2703485706€ 00

9.7521695726E 01
-1.9855979823E~01
2.5913714838¢ 00
4.1458047252E 00

ete.

9ETA

~3.,5682443068E~04
2,6812252992€-04
5.3531491610F 02
~2.4758871832€-04

~6,3174787540E~-04
7,4335946018E~04
5,3531466327€ 02
-9.0217576732E-04

-1,0168919375€-~03
1.6495150844€-03
5,3531387220¢ 02

~2.5190359429E-03

-1.4989517315€-023
3.1741359177€-03
5,3531180910F 02

«5.8913847980E-03

~2,0119420305€-03
5.4962257587E-03
5.3530722754F 02
-1.20817%54062E~02

-2,5735511701E~03
8,4376227981E-03
5.3529792174€ o2

~2,1343558134€-02

-2.9681271866Ev03
1.2248665309E~02
5.3528171614F 02

~3.53860820%50E~02

~2,6951511963E-03
1.7129860661E-02
5.3525622661€ 02
~5.8236494653F-02

~9,8658684501E-04
2,.3165194003E~02
5,3521915325F 02
~8,.5972919220E-02

2,6810181920£-03
3.0015046450€~02
5.3516849616€ 92
~1.2475786584€-01

8.1876080304E~03
3.6891141876€E~-02
5.3510287224F 02
~1,6977873084E~-01

1.8976410876E-02
4,4834573182€-02
5.3502352129€ 02
-2.2999859748E-01

3,2997994109E~02
5.2249887837€+-02
5.3493227222¢ 02
~2,9544413715€-01

5.5003431684E-02
6.0054431765€-02
5.3483325165E 02
=3.7703096748E=-01

8.,5644337684E<02
6,7697360074F=02
5,347324555%€ 02
-4,7277072845€6-01

1.2211542523€~-01
7,4091658292€~02
5,3463609780E 02
~5,7208698839E-01

1.6193110389E-01
7,8909255597€-02
5,3455148%47¢ 02
~6.,6803755015€6~01

2.0745179831E-01
8.23783n5516€-02
5,3448774786€ 02
-7.6410733820€-01

2.4569013448E-01
8,40335509%58E-02
5.3444764551F 02
~-8,3618110842%E-01

2.6912253935€-01
8,44310607116-02
5.3443381407E 02
-8,7490351314E-01

2.5582464727E-01
8,4587523132€-02
5,3443471658€ 02
-8,5679448189E~01

~1.1440575004E
*1,1440464525€

~3.7106870800F
~3.7106368317€

~1,1724825078¢€
~1.1924677331E

=3.3616354644E
=3.3616021176E

~8.2158235635€
~8.,2157604639€

*1.8112218995E
~1.82112101479E

~3.54066366)4E
~3.5456467326E

~6,2735288631E
-8.2735062676E

~1.,0272798299€
=1.0272769997¢

=1.5770217530€
~1.5770183698E

~2,2923830359E
=2.2923792334E

~3.1710%10738¢
«3.1710470324E

*4.1915713409E
~4.1915670917€

=5,3329786050E
=5,3329744578€

~6.8474206777€
~6,54741648436

«7.7780664540€
=7,7780626406€

~8,9593353383E
=8.9593304705€

=1.0086543114E
~1.0086538723€

~1.4106202739E
=1.1106193487¢

*1.2157018249E
*1.2157009419€

~1.,2261880868E
-1,3261860089€

09
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09
09
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12
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13
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Appendix 2.3. Program ANPER.

PROCEDURE PF(H’HSIEUEIIALODBEOOAO'EXZOIALSOBESIAS'EXZS}F) }
VALUE "DHSIEIEllAOOEXZODASIEXZS H
REAL M,MS,E,E1,A0,EXZ0,AS,EXZS
ARRAY AL0,BED,ALS,BES,F 3
BEGIN

REAL ES:ESAuXS.YSoZS,R.X.Y.Z-DVDX.DVUY,DVDZ.SUM.H.HUOS-HSIN ’

INTEGER L
ARRAY U,US,DUDE,DVDUI1:4) 3
H 1= E1=EXZ0®SQRT((M+MS)/MI*(AD/AS) +1,5«SINCE)} 3
ESA = H 3
LOOP: ES 3= ESA-(ESA~EXZS*SIN(ESA)~H)/(1~EXZS*COS(ESA))
IF  ABS(ES~ESA) > w-9 THEN
BEGIN ESA := ES ; @QOTQ LOOP END
HCOS :3 COS(ES/2) 3 HSIW := SIN(ES/2)
FOR L:= STEP 1 UNTIL 4 DO
US[L) := ALSIL)#HCOS+BESIL]I®HSIN }
XS = USIl)'USlll-US(Zl-US(Z]-USI3)QUS(3)*US(4l'U$(4l H
YS 1= 2#(US[11*US[21~-US{31+JsS(4))
25 13 2+(US111*°US{31+US[2]1#US(4))
HCOS :3 COS(E/2) 3 HSIN 3 SIN(E/2)
FOR L:= STEP 1 UNTIL 4 DO
BEGIN
UIL) t3 ALOILI*HCOS+*3EQ[L)*HSIN ;
DUDE{L) := =ALOLL)/2#HSIN+BEQ(L)/24HCOS

END

R = U[l)'Ulll*UlZl'Ulzl+U(3!'UlSl*U(4ltUl4l H

X &= Ulll'Ulil-UIZI-U(Zl-Ul31~U(31*U(41t0l4l H

Y t2 2#(UlLl)eul2)=d(3)1%U(4])) 3

2 = 2w (Ul1l)eul3)eU(2)0U(4]) 3

M = ((x-XS)t(X-XS)4<Y-Y3)a(Y-YS)¢(Z~ZS)t(Z~ZS))'1-5 ;
DVDX ta (X=XS)/H 3 DVDY := (Y=YS)/H ; pvDZ = (2-2S)/H 3
H t= (XSeXS+YS*YS+ZS*ZS)t1,5 3

DVDX =3 ~MS«(DVDX+XS/H) 1

DVDY i3 =~MS+«(DVDY+YS/H) 3
DVDZ := ~MS«(DVDZ+ZS/H) 3
DVDUIlL) 3 2%( UlL)«DVDX+U(2)1#DVDY+U(31#DVD2)
pvpul2)l = 2¢(=y(2)«DVDX+U[1)#DVDY+U(4)*DVDZ)
pvput3) 3 2¢(=U(31«DVDX~U(4)«DVDY+U(1]1w#DVDL)
pVDUL4) 3 2«( Ul41«DVDX=-U{31eDVDY+U(2)#DVDZ) ;
SUM = UVDU(il'DUDE[llODVDUl21~DUUE(21*DVDUIJI'DUDE(31
+DVDU{4])«DUDEL4]) ;
FOR t= STEP 1 UNTIL 4 DO
BEGIN
FIL) = AO/M/2#(R#DVDU(L])+4+«DUDE[L)*SUM) 3
FlL+4) = FLL)*HCOS
FIL) 3 =-F(L)*HSIN 3
END

e we we we

END PF

PROCEDURE PDF 9DDELAN(M, ALO,BEQ, A0, EX20,1,DF 9DDELAN, JKMAX)
VALUE M, A0,EXZ20,1,JK1AX 3
RBAL M,AQ,EXZ0 3 INTEGER I,JKMAX 3}
ARRAY ALO,BEOQ0,DF9DDELAN 3
SBGIN

REAL MSW,AUSQ

INTEGER J,K ;

MSQ 3 SQRT(M) ; ADSQ := SQRT(AQ) 3

FOR J:= STEP 1 UNTIL JKY¥AXx-1 DO

FOR K:a=(JKMAX-1) STEP 1 UNTIL JxkMAX=1 DO

PEQIN OUFYLVELANIJIK,1) t= 0 3 DFYDDELANLJY,K,2) 3% 0 END
DF9DDELANIO,0,1) := AOSI/MSIe( IF 1<4 THEN ALOI1) ELSE

AEO(1~-41)+A050/ 45072+ [F 154 THEN ALOLI] ELSE EEQ(1-4))

H
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DF9DDELANIL1,0,1)

DF9DDELAN(1,0,2]
ALOLI-41))/2
END PDFIDUELAN 3

_79_

t= (ADSQ/MSQeC IF 1S4 THEN ALOI(I)
-BEQ[1-4))-EXZ0*A0SQ/MSQ/2¢¢ IF 1S4 THEN ALOLI)
BEO(1-4)))/2

:ELSE
‘ELSE

t= -(A0SQ/NSA#( IF 1S4 THEN BEOI[1] ELSE

RROCBDURE DFOURAN(JKMAX,F,A) ;
;  INTEGER JKMAX : ARRAY F,A ;

VALUE JKMAX

BEGIN

PROCEDURE
VALUE

‘END SFOURAN

IN

SFOUR
JMAX

INTEGER U
ARRAY COS

FOR

Ji30

BEGIN
COSARRAY[J] 3= C0S(3,14159265367 JMAX®Y)
SINARRAY{J] t= SIN(3,1415926536/JMAX*J)
COSARRAY[ J+JMAX] i3 =COSARRAY(J]
SINARRAY{J+JMAX) i3 =SINARRAYIJ] ;

END

AlO,1)

FOR

AlO,1)
AlL0,2)

FOR

’ -
N:=0
HE 3
=1

J3

BEGIN
AlJ,1)

FOR

BEGIN
JNMOD2JMAX = JaN«ENTIER(JAN/(24JMAX) ) #2*JMAX

AlJd,1) 2 ALJ,1)+FINI#COSARRAY{JUNMOD2JNMAX] 3
AlJ,2) := AlJ,2)=FINI*SINARRAY[JNMOD2JMAX] 3

BND

END’
FOR
BEG

END

INTEGER
FOR K:=

BEGIN

FOR J

END

FOR

BEGIN
FO

FO
BE

FOR

FlJ

Ji=0
IN
AlJ,1)
AlLJ,2)

»

JrK 3
STEP

ANCJIMAX,F,A) 3
INTEGER JMAX ; ARRAY F,A 3

s N+ IUNMOD2JMAX
ARRAY, SINARRAY[Q:2+«JMAX~1]) 3
STEP 1 UNTIL JMax=1 DO

0
STEP 1 UNTIL 2+JMAX-1 DO
[0,1)+FIN] 3

A
0

STEP 1 UNTIL JMaX-1 DO

t= 0 ;3 AlJ,2) 3 0

N:=0 STEP . 1 UNTIL 2euMAX-1 DO

STEP L UNTIL JMAX-1 DO

ALJUN1)/727JMAX 3
AlJ,2172/7JMAX 1}

ARRAY AT[0:JKMAX=1,132]1,FI(0:2%JKMAX] ;

1 UNTIL 2#JKMAX DO

t20 STEP 1 UNTIL 2«JKMAX DO FIl(J)
SFOURAN(JUKMAX,FI1,AL)

FOR J
BEGIN

1=0 8

1K) 32

TEP 1 UNTIL JKMAX-1 DO

AllJ,11

FLJ*JKMAX,K] = AL[J,2) 3
END

.
’

Ji=0

STEP

R K:= S
SFOURAN(JUKMAX,FI,AI) ;
i= STEP 1 UNTIL JKMAX-1 DO

R
GIN

FlJsKI 3%
FLJsK+JKMAX]) 3 AT(K,2]

Ke=

1 UNTIL JKMAX-1 DO
TEP 1 UNTIL 2#JKMAX DO FIIKI]

Al(K,1)

STEP 1 UNTIL 2«JRMAX DO FI[K]

SFOURAN(JKMAX,FI,Al)

FOR

BEGIN
FUJ*JKMAX,K] = ATI[K,1) 3
FlLJ*JKMAX,Ke JKMAX]) 3 ALILK.,2)

Ks=

.
’

STEP 1 UNTIL JkMAX-1 DO

FLJWK) 3

FLUKD) 3

PlJeUKNMAX,K]



- 80 -

FOR J:=0 STEP 1 UNTIL JKMAX-1 DO

FOR K:30 STEP 1 UNTIL JKMAX-3 DO

BEGIN
AlJ,Ksl) 12 FLJU,KIFLJI+JKMAX, K®JKMAX] 3
ALJ,Ks2) 33 FLJ,K+JKHAX] oF [ JoJKMAX,K) 3
AlJ,~Kyl) 33 FLJ,K}+F[JeJKMAX, K+ JKMAX] 3
AlJ,=Kp2) 13 «F[J,KeJKMAX ) oF [ JOIKMAX,K) ;

END

END DFOURAN ;

PROCBDURE DFOURINT(JKMAX,A,C,D,X0) 3
:ALUE JKMAX,C,D,X0 5 INTEGER JKMAX ; RBAL C,D 3 ARRAY A }
8GIN
COMMENT  INTASUM(A[J,K,11+I%AlJ K, 2))*ECI(JUX+K(DX4C))) =3
ALO, 0,21 %(X~X0)+SUMIA[J, KoL) *I®A{ UK, 21)%E2 T (JXSK(DXSL))) 3
INTEGER J,K 5 REAL H,HCOS,MSIN :
FOR J:=0 STEP 1 UNTIL JKMAX-1 DO
FOR K:iz=(JKMAX-1) STEP 1 UNTIL JKMAX~-1 DO
$IF  J%0 v Kx0 THEN
BEGIN
H is ALJ,K,2)/()+K#D) 3
AlJ K21 i3 =ALJ,K.11/7(J+K®D) 3}
AlLJ,K,2] 3 H 3

END
ELSE
Al0,0,2) t= A[0,0.,1) 3
ALO,0,1) 2 0 3
HCOS &= COS(JeX0+K*(DaX0+C)) 3 HSIN :3 SIN(JI*X0O+Ka(D*X0+C)) }
FOR J:=0 STEP 1 UNTIL JKMAX-%1 DO
FPOR  K:iz~(JKMAX=1) STEP 1 UNTIL JKMAX~1 DO
AlL0,0,1) = A[0,0,1)~C IF J#0 THEN 2 ELSE IF  J30AK#0 THEN
1 BLSE O0)*(A[J,K,1)#HCOS=A[J,K,2)}*HSIN) ;
END DFOURINT ;

PROCBDURE DFOURPRODSP(JKMAX,A,B,C) 3
INTEGER JKMAX 3 ARRAY A,B,C 3
OBGIN  COMMENT SUM(ALJ,K,1)+10A(JsK,2)I*EPI(JIXGKY)
* ((Bl=1,0,1)¢]*B(-1,0,2))%E*~IX + B(0,0.,1) ¢ (B[1,0,1)
¢1#B(1,0,2))%E?IX) 3! SUM(CIJ,Ks1)+]*ClJ,K,21)%E2I(JXKY) }
INTEGER J.,K
FOR K:==~(JKMAX-1) STEP 1 UNTIL JKMAX=1 DO
OEQIN
Clo,K,1) = AlL:Ks11wBl1,001)*Al1,K,2)*B(1,0,2)
*A(O-K;l"a(OpOpi)*All»'K;1,‘9113001]‘Afin'K02|'B(10002] H
ClO,Ks2] = =A[1,K,1)%B(1,0,2)%A(1,K,2)%B(1,0,1)
*A(Otan"BIOIOnil*A[lo‘K:1,'3[1’092)‘A(1J'K121'8l10001l H
FOR Ji=1 STEP 1 UNTIL: JKMAX-2 DO
BEGIN '

CldsK,1) :m AlJe1,K,11#B(1,0,1)¢A(J*1,K,2)%B[1,0,2)
*ALJ,K,11%B(0,0,1)¢AfJ=1,K,1]1*B(1,0,1)
=AlJ~1,K,2)*B11,0,2) 3

ClJ,K,2) := ~A{J+1,K,1)eB(1,0,2)+AlJe1,K,2)eB[1,0,1])

*AlJ,Ks2)#B(0,0,1)+A0J-1,K,119B(1,0,2}
+A(J=1,Ks21%B[1,0,1]) 3
END
CIJUKMAX=~1,Ks1] i3 ALJKMAX=1,K,11#B{0,0,1)+AlJKMAX=2,K,1)
*B(1,0,1)-A{JKMAX=2,K,2]1#6(1,0,21 3
CIUKMAX=1,Ks2) !z ALJKMAX=1.,K,2)#B{0,0,1}¢ATJKMAX=2,K,1)
*B11,0,2)¢AlJKMAX=2,K,2)*B(2,0,1) 3
GND
END DFOURFRODSP 3
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PROCBDURE DFOUREV(X,»X0,JKMAX,A,C,D,AEV)

VALUE X,X0,JKMAX,»C,D ;

‘RBAL X.X0,C,D,AEV 3 INTEGER JKMAX : ARRAY A ;

‘BAGIN
INTEGER J,K ;
AEV 12 A(0,0,11+A10,0,21«(X~%X0) ;
FOR K:31 STEP 1 UNTIL JKMAX-1 DO
AEY 2 AEV42«A(0,K,1)#COS(K*(D*X+C))~2%A[0,K,2)2SIN(K*(L*X+C)) ;
FOR HE STEP 1 UNTIL JKMAX-1 DO
FOR K:==(JKMAX-1) STEP 1 UNTIL JKMAX-1 DO
AEV = AEV+2#A01J,K,1)*COS( JwXoKw(D*X+C))=20A[J,K,2)«SINCJIOX

) +Ke(DeX+C)) ;
:END DFOUREV ;

REAL M,MS,E0,ESO,A0,EXZI,AS,EXZS,D.C,RES,TF,TFT 3

INFEQER JUKMAX,J,K,1 ;

ARRAY ALO,BEO,ALS,BESI1:4) ;

FORMAT INF := ''(SH EO0 =,F14.10/6H ALPHA,3X,4E20.10/5H BETA,4X,
4E20.10/16H SEMI-MAJOR AXIS,E20,10/13H ECCENTRICITY,E20.10/4K T s,
E18,10,13H * (E-EQ) +,E20.10,19H = (SINCE)=SIN(EO) )" ;

DATA [IN:
READ(M,EQ,ALO{1],ALOl2),ALO(3),ALO(4),BEQ(L),BEO[2]),BEOI3),HEQ(4])) }
CUTPUT(51, "' (13H1CENTRAL MASS//44 M =,E£18.10//7//

22H SATELLITE UNPERTURBED/)'' M) 3
AO = ALO[L1I®ALO(1)+ALOI2]~ALO(2)+ALOI3)«ALOLI)I+ALO(4]nALO(4] 3
EXZ0 :> BEG(1]1+BEO[L1)+BEOI2]~BE0O(2)+BEO(S)eBEO{31+BEO{4)*BEQ(4) )
AQ0 3= (AD+EXZ0)/72 ;
EXZ0 := (~AOQ*EXZ0)/A0 ;
CUTPUT(51, INF,E0,ALO(L),ALOl2),ALO013]),ALO(4]),BECIL],BED(2),BE0([3]),
BEO(4),A0,EXZ0,A0¢1,5/SQRT(M),~EXZ0«AQ*1.5/SQRT(M)) ;
READ(MS,ESO,ALSIL),ALSI2),ALS[3),ALS(4),BESI1),BES(2]),BES{3),BES(4))}
CUTPUT(51,''(///16H PERTURBING MASS//4H M 3,E18.10)'',MS) ;
AS 1= ALSU1)#ALSIL1+ALSI2)#ALS(2)+ALSI3)#ALS(31+ALS{4])0ALS[4)
EXZS t3 BES[1)1#BES[1)+BES[{2)#BES(2)+BES(3)*BES(31+BES{4)*BES(4]} 3
AS 1= (AS+EXZS)/2 ;
‘EXZS :3 (-=AS+EXZS)/AS ;
CUTPUT(51, INF,ESO,ALSI1],ALS(2),ALS{3),ALS(4),BESI1],BESI2]),BESL3]),
BES[4),AS)EXZS,»AS*1.5/SQRT(4+MS),=~EXZS*AS*1,5/SQRT(M+MS)) ;
READ(JKMAX) 3
CUTPUT(S51,'*'(///
B9H APPROXIMATION OF THE FOURIER SERIES BY FOURIER POLYNOMIALS//
8H JKMAX =,15)'"',JKMAX) 3
READ(TF,TFT) 3
RESCNANCE ANALYSIS:
[ & SQRT(1+MS/M)*(AQ/AS)*1.5 }
C = ESO~EXZS*SIN(ESO)-~-D*(E0-EXZ0*SIN(ED)) 3
CUTPUT(51,''(///19H RESONANCE ANALYS]S//5H E1 =,F13.10,6H » E +,
F14.10/7)'',D.C)
RES 3 1
FOR J:=1 STEP 1 UNTIL 2+JKMAX DO
SBGIN
] = ENTIER(JU/D) 3
FOR K:=1-1,1,1+1,1+2 DO
IF  ABS(J=K*D) < RES THEN
OEQIN
RES :3 ABS(J=Ke]) 3
QUTPUT(S1, ' " (1X, 14,24 «,14,2H *«,F13,10,4H 2,F15.10)'°*,
JoKsD,J=KeD) ;
END
:END 3
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FIRST ORDER PERTURBATIONS:
CUTPUT(S1,'*'(26H1FIRST ORDER PERTURBATIONS)'')
REWIND(1) ; REWIND(2) ;
FOR J:=0 STEP 1 UNTIL 2«JKMAX DO
BBGIN
ARRAY F{1:8]),FK(1:8,0:2«JKMAX] 3
FOR = STEP 1 UNTIL 2eJKMAX DO
BEQIN
PF(M,MS,3,1415926536/JKMAX*),3,1415926536/ JKMAX*K,ALO,BEQ,
AQ+EXZ0,ALS,BES,AS,EXZS,F)
FOR I[:= STEP 1 UNTIL 8 DO FKII.,K]) := F(I) 3

END
BINWRITE(2, FOR [:= STEP 1 UNTIL 8 DO ( FOR K:20 STEP
1 UNTIL 2+JKMAX DO FKII,Kk1))
END
FOR 1:=1 STEP 1 UNTIL 8 DO
88GIN

INTEGER 1 3
ARRAY FJUK[O032% JKMAX,0:2«JKMAX]) ,DELIOSJKMAX~1,~(JKFAX=1)IJKMAX=1,
1:2) 3
REWIND(2)
FOR J:=0 STEP 1 UNTIL 2eJKMAX DO
BINREAD(2, FOR II:=1 STEP 1 UNTIL | DO ( FOR K:=0 STEP
1 UNTIL 2*JKMAX DO FJKLJ,KI1)) 3
DFOQURAN(JKMAX,FJK,DEL) 3
DFOURINT(JKMAX,DEL,C,D,EQ) 3
BINWRITE(L, FOR J:=0 STEP 1 UNTIL JKMAX-1 DO ( FOR
Ki3~(JKMAX~1) STEP 1 UNTIL JKMAX=1 DO
(DELIJsK,1)}DELIJ»K,21))) 3
§F 1<4 THEN
QUTPUT(51,''(//7/78H D ALPHA,12,4H *,E8,0//)'',1,TF)
ELSE
OUTRUT(51,''(////7H D BETA,12,4H *,E8,0//7)''1=4,TF) 3
QUTPUT(51,"''(15H SECULAR TERM =,F13,0,11K « (E~E0)//2X,1FE.2X,
2HE1,10X%X,3HCOS,11X,3H4SIN,8X,1HE,2X,2HEL1,10X,3HCCS, 11X, 3FSIN,8X,
1HE,2X»2HE1,10X,3HCOS,11X,3HSIN/) ' ', TF*DEL(0,0,2)) ;
OUTPUT(S1,''(13,14,F14,0)'',0,0,TF*DELI0,0,1))
FOR K:=1 STEP 1 UNTIL JKMAX-% DO
OUTPUT(51,'' (13,14.2F14,0)'',0,K,2*TF*DEL(O,K,1],
~2«TH*DEL(0,K,21) 3
FOR i STEP 3 UNTIL JKMAX-3 DO
OEGIN
QUTPUT(51,' ' (1X)*'") ;
FOR K:=-(JKMAX-1) STEP 1 UNTIL JKMAX-1 DO
OQUTPUT(51,"' (13,14,2F14,.0,4X,214,2F14.0,4%X,214,2F14,0)"'',J,K,
2w TFeDELIJsK 1) o ~2#TFeDEL(JoK,2)»J*1,K,2*TFoDELIJ*1sK»1),
“2#TFaDEL{J*1,K,2]),J+2,K,2%TFwDEL{J*2,K,1),~2#TF
wDEL{J+2,K,2)) 3
END

END
REWIND(1) ; REWIND(2) ;
FOR I:s1 8TEP 1 UNTIL 8 D00
GBGIN
REAL DELY1I,DEL92! ;
ARRAY DUEL,DF9DDELAN,DELOI(03JKMAX=1,=(JKMAX=1) :JKVFAX=1,182] }
BINREAD(1, FOR J:=0 STEP 1 UNTIL JKMAX=1 DO ( FOR
Kim~(JKMAX=1) STEP 1 UNTIL JKMAX~1 DO
(DELIJsK,11,DELIJIK,21)))
DEL[O0,0,1) := DEL(O0,0,1)-DELIO,0,2)*E0 ;
PDFODDELAN(M,AL0,B850,A0,EXZ0, 1, 0F9DDELAN, JKMAX) 3
DEL91I := DF9DDELANI1,0,1)#DELI0,0,2) 3
DEL921 := DF9DDELAN(1,0,2]1#DELIO,0,2)
DEL(0,0,2) := 0 ;
DF QURPROUSP (UKMAX, NEL, DF9DDELAN, DELYI)
BINWRITE(2, FOR J:=0 STEP { UNTIL JKMAX-1 DO ( FOR
Kia=(JKMAX=1) STEP 1 UNTIL JkMAX~-1 DO
END (DELYILJ,K,1),DEL9ILJ,K,2))),DELYLE,DELO2I)
H
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REWIND(2)
BEGIN
REAL DEL91,DEL92,DEL9LI,DEL92] 3
ARRAY DEL9,DELOII0:JKMAX~1,=(JKMAX=1) I JKMAX-1,132]
DEL91 := ; DEL92 := 0 ;
FOR J:=0 STEP 1 UNTIL JKMAX-1 DO
FOR K:=~(JKMAX~1) STEP 1 UNTIL JKMAX-1 DO
PEQIN DEL9IJ,K,1) := 0 ; DELILJ,K,2) 3 0 END
FOR 1= STEP 1 UNTIL 8 DO
BEGIN
BINREAD(2, FOR J:a0 STEP 1 UNTIL JKMAX-1 .DO ( FOR
Kiz~(JKMAX=1) STEP 1 UNTIL JKMAX-1 DO
(DEL9II1JsKs11,DELIICLJIK,2)) ) DEL9LLLDELO2])
DEL91 i= DEL9L1+DEL91I ; OE(92 := DEL92+DEL9Z!
FOR J3~= STEP 1 UNTIL JkMaX-1 DO
FOR K:=~(JKMAX~1) STEP { UNTIL JKMAX-1 DO

BEGIN
DELYTJ,Ksl] = DELIIJ,K,1)+DELIILJSK,LT 3
DEL9LJ,Ks2] 2= DEL9(J.K,21+DELII(J,K,2]
END
END

DFOURINT (JKMAX,DELY,C,D,ED) 3
DEL910,0,1) := DEL9[0,0,11=2#CO0S(E0)*DEL9L1+2#SIN(ED)*DELY2 }
DEL9(1,0,1] :=3 DEL9{1,0,1)«DEL9L }
DEL911,0,2) := DEL9{1,0,2]+DEL92 }
BINWRITE(L, FOR J:=0 STEP 1 UNTIL JKMAX-1 DO ( FOR
12-(JKMAX=1) STEP 1 UNTIL JKMAX-1 DO
(DEL9(J,K,1),DEL9{J,K,2]1)),DELYL,DELI2)
QUTPUT(S51,"'(/7//84 D T *,E8.0//7/16H SECULAR TERVMS 3,F13.0,
11H w  (E-ED0)/16%X,F13.0.,26H « (E*COS(E)~EQ#CCS(E0))/16X,
F13,0026H * (E«SIN(E)=EO®SIN(ED))//2X,1HE,2X,2HEL1,10X,3HCOS,
11X, 3HSIN,8X,1HE,2X, 2HEL,10X, 3HCUS, 11X, IHSIN,BX,1HE,2X,2HEL,
10X,3HCOS,11X,3HSIN/) 'Y,
TFT,TFT#DEL9(0,0,2),2«TFT#DEL92,2*TFT*DELY9L)
OQUTPUT(51,"''(13,14,F14,0)*',0,C,TFT«DEL9(0,0,1)) 3
FOR K:=1 STEP 1 UNTIL JKMAX=1 DO
OUTPUT(51,'*'(13,14,2F14,0)'',0,K,2+TFT#DELS(0.K,1]»
~2#«TF T«DEL9(0,K»2))
FOR J:s1 STEP 3 UNTIL JKMAX~-3 DO
BEGIN
QUTPUT(S1,' " (L1X)*')
FOR K:=-(JKMAX=1) STEP 1 UNTIL JKMAX-1 DO
OUTPUT(51,''(13,14,2F14,0,4X,214,2F14,0,4X,214,2F14,0)°'",
JrKo2*TFT#DELIIJsK,1],=2«TFT#DELY[VsK, 2],
J*1,K,2#TFT#DELO[J+1,K,11,=2*TFT#DELI(J*1,K,2]),
J*2,K,2«TFTDELO 1 J+2,K 1), =2+ TFT#DELO(JU+2,K,2]) ;

END
END
EVALUATION OF THE SERIES:
BAGIN

REAL E,DELEV,DEL91,DEL92,T 3 INTEGER 11,12 ;
ARRAY DEL[O0:JKMAX=-1,~(JKMAX=1)JKMAX=1,2:2] ;
READ(I)
IF 120 THEN OUTPUT(51,'?*(25HLEVALUAT[CN OF THE SERIES)'') 3
FOR 1I1:=1 STEP 1 WUNTIL I DO
BEGIN
READ(E) ;
DUTPUT(S51, "' (////4H E =,F14,10/26X,11HUNPERTURBED,9X,
12HPERTURBATION,9X, 9HPERTURBELU/10X,SHALPHA) *',E)
REWIND(L) 3
FOR [2:=1 STEP 1 UNTIL 4 DO
BEGIN
BINREAD(1, FOR J:=0 STEP 1 UNTIL JKraXx-1 DO ( FOR
tz=(JKMAX-1) STEP 1 UNTIL vKkMAX=1 DO
(DELIJ,K,11,DELIJNK,2))))
DFOUREV(E,EQ, JKMAX, DEL,C, U, DELEV) 3
JUTPUT(S51, ' '(20X,3E20.10) "', ALOLI2),DELEV,ALO(L2])+DELEV) ;
END
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OUTPUT(S1, 7 (10X, 4HBETA) ')
FOR 12:=1 STEP 1 UNTIL 4 DO
BEGIN
BINREAD(1, FOR J:a0 STEP 1 UNTIL JKMAX-1 DO ( FGR
i3=(JKMAX=1) STEP: 1 UNTIL JKMAX~-1 DO
(DEL{J,Ks11,DELIJ,K,2)))) 3
DFOUREV(E,EQ, JKMAX,DEL,C,D,DELEY)
6 DourPu7<51."(zox.sszo.io)".8&0(lZl.DELEV.BEO(lZ)ouELEV) 3
N H
BINREAD(1, FOR J:30 ST@P 1 UNTIL JKMAX-L DO ( FOR
K:3=(JKMAX=1) STEBP { UNTIL JKMAX-1 DO
(DEL(J,Ks1),DELLJ,K,2))),DEL9L,DELD2)
DFOUREV(E,EOQ, JKMAX,DEL,C,D,DELEV) 3}
DELEV $x 2#DEL92«(E*#COS(E)=EQ*COS(ED))+2+DELIL#(E*SIN(E)
~EO0*SINCED)) +DELEV ;
T ta AQt1,5/SQRT(M)*((E~EO0)~EXZ0*(SINC(E)~SINCEQ))) 3
OUTPUT(51,* ' (/10X,1HT,9X,3E20.10)'", T, DELEV, TeDELEV)
END
END
CUTPUT(SL, "' (/////744H END QUTRUT)I'') ;

eNd
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Appendix 2.4. Output of program ANPER. Fourth example.

CENTRAL Mass
M:=  1,0000000000E 0O

SATELLITE UNPERTURBED

EQ = 0
ALPHA 7.0710678118E=01 0 1,00000000

00E 00 0
BETA 1.0000000000€ 00 1.0000000000E 00 -7,0710678118E-01 =1,4142135624€ 00

SBMI-MAJOR AXIS 3.0000000000€ 80
ECCENTRICITY 4.9999999999E-01
T:s 5.1961524227€ g0 « (E-Eq) * =2.5980762414E€ 00 * (SINCE)-SIN(EQ))

PERTURBING MASS

M'® 1.0000000000E-02
€0 = 1]

::::A 3.0000000000€ Q0 a 3.0000008000E 00 0
0 3.000000 -

SAMI=MAJOR AXIS 1.8000000000¢ 01 000000008 oo * 3:0080000000F 00

ECCENTRICITY [} T

T:s 7.5988534829€ 01 » (E~£0) * =0 « (SINCE)-SIN(EOD))

APPROXIMATION OF TWE FOURIER SERIES BY FOURIER POLYNOMIALS
JNMAX = 13

RGSONANCE ANALYSIS

EL = ,0683807424 « E + 0
1= 13 ¢ 0683807424 = .1110503494
1 = 14 ¢« ,0683807424 = «0426696070
1 - 15 « 0683807424 = -.0257111383
2~ 29 » ,068380p7424 L] 20169584717
3= 44 ¢ 0683807424 L] «.0087526636
S~ 73 « ,0683807424 = +0082058080
8 -~ 117 « ,0683807424 ] =.00054685%4

FIRST CRDER PERTURBATIONS

‘D .ALPHA 1 L 1E 14

SHCULAR TERM ‘s 275947504 « (E~E0)

E B cos SIN € Et cos SIN £ €1 cos SIN
0 0 34081166103

0 1 -3015179143  -3860292829

0 2 -28107172082 -~30626281948

6o 3 3212603509 4732426530

o 4 ~378689109 -778492691

0o s 41934877 132542819

0 6 «36689407 «22885097

0o 7 50795 3968004

o 8 92079 -686471

0 9 -34183 117906

0 10 9166 -20013

0 11 ~-2168 3342

o 12 458 ~560

1 12 2303 6428 2 12 17 -1887 3 12 +568 1827
1 -11 -5004 ~24228 2«11 «1360 8666 3 -ty 3636 ~6612
1 -0 5380 96623 2 ~10 12173 ~38840 3 -10 ~20956 27572
1 -9 36772 ~394696 2 -9 -82204 169319 3 -9 112202 «109589
1 -8 -400077 1624170 2 -8 488758 ~713869 3 -8 564932 408581
1 -7 2738195 ~6656752 2 a7 ~2680999 2683938 3 .7 2677484 ~1327379
1 =6 ~16094494 26903298 2 -6 13791445 «10989819 3 -6 »11835369 4022664
1 -5 87186253 ~106000613 2 -8 ~66568032 38374159 3 -5 47627154 -8371713
1 -4 ~444446559 400609482 2 -4 297081710 «115108193 3 -4 ~164362673 1208256
1 -3 2136046561  =1402294290 2 3 -1166002161 252292767 3 -3 407645682 100957562
1 =2  -93599996203 4369492102 2 w2 3291249051 77515843 3 w2 -448054896 -466821730
1 -1 532758988 582558535 2 -1 -401825744 -266533904 s -1 122022511 106555160
1 0 -2273519972 ~430785509 2 0 846486879 243758079 3 0 «51729011 ~118971655
1 1 464804596 25783603 2 4 --142150513 «23841479 3 1 24761486 20136313
1 2 469844040 1649072456 2 2 53071443 ~118028738 3 2 -6962909 *501412
103 -57473137 ~352537867 2 3 -15741467 42480499 3 3 3726154 -2076612
1 e 2219937 71631240 2 4 4684735 ~9881782 s 4 ~1217364 770296
1 s 1475683 =13998751 2 9 -1282004 2061932 3 s 337303 *187072
1 6 -864042 2657102 2 6 324861 ~40071% 3 8 -85157 37155
1 7 200030 -491072 2 7 -77629 73479 3 7 20147 -6212
1 8 -51772 80334 2 8 17716 -12710 3 8 ~4539 812
1 9 12329 -15422 2 9 -3896 2048 s 9 983 -48
1 10 -2780 2598 2 19 830 -290 3 10 -205 -16
1 11 598 ~421 2 1t «169 " 3 1 4“1 1
1 12 ~111 84 2 12 26 -33 3 12 .11 37
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cos

993
~5184
25539

~118848
$19383
«2099780
7616931
«23194927
49895948
=46408442
2778991
-1403017
1793137
11602
509590
-271227
144293
«50458
14371
-3639
850

-187

39

=10

20

«860
2989
-9342
25075
=52602
67094
4060
-56884
61481
~28743
39328
12761
10080
~3917
1787
-668
225
~69

19

-5

1

-0

-2

10

-44

48
-51
-37
236

-281
314
-107
211
«33

56

-14

-3
-0
=0
-0
-0
-0
~0

-3

SIN

-1196
4657
«16954
55932
-156548
302636
100434
«4432082
24117595
«67849068
12831040
«27175508
7116746
-3940146
1057683
~184391
26541
-4856
1828
-749

265

-82

21

4

-42

-75

711
«3301
15499
«49603
117348
-1663687
31041
~105640
7958
~17846
4408
=900
660
~103
132

-74

43

-20

8

-3
1
1

-4
9

93
=209
337
=298
s
~189
=130
3
-56
57
-23
21
-9

5

-2

1
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0
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cos

=1215
5565
~24064
97246
360344
1181498
~3185%935
899852
~4242510
-804785
840251
«258537
532360
111434
82185
709
5729
3688
«1396
410
~104

24

-6

7

-34

489
=31401
3381
~6114
5681
4205
=10421
11520
«4686

=15

~14

etec.

SIN

744
-2387
6404
-11100
-13119
233559
1271424
4499646
-943279%
1865628
-479153%
1150298
~906866
338371
-1294688
45992
-13328
4226
-131%
394

~112

30

-8

-8

38

209

~878
3039

~84634
17414

-31
~32
-5
-18
-27
10
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-3
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-0
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cos

1155
«4655
17437

-59334
176122
=420377
639237
~299118
~266453
279197
«113554
173370
-54622
36220
=-11887

3992

-916

110
13
12
T4
-1
2
-9
a“

SIN

=269
396
1070
-12794
69351
268333
751797
-1271126
2%0861
«741716
130374
«143360
51667
~21557
10300
«3915
1663
~623
227

«75

23

-5

~0

7

25

-179
549
~1361
2474
~2572
285
«1714
~510
»31
~197
222
-9
82
35
18

-7

3

-1

0

-9

0

-0

=0

2

-9

6
=3
-2
-1
-5

2
-2

2
-1

1
-0

0
=9

]
~0

0

0
-0
-0

0
-0
-0

9
-1
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0T A 1€ 14

SBCULAF TERMS = 38164546416 o (E-EU)
10545733673 # (T«COS(E)=RO*NNS(EDN))

g E1 cos

0 0 <~11508445%088
0 1 21365564621
0 2 =33987863205
0 3 8212315187
0 4 -1902924203
0 5 420928879
0 6 «91195562
0 ? 16609821
0 8 ~4220800
[} 9 916806
0 10 =203010
0 11 46504
0 12 ~10951
1 12 -77876
1 -11 240445
1 -10 =830906
1 -9 3044459
1 =8 =11462752
1 7 43318093
1 =6 -160077712
t =5 852632476
1 -4 -1572113587
1 =3 1432287429
1 -2 40329233934
4 *1 22734762425
1 0 -117963%0900
1 30547905568
i 2 =22441936241
4 3 3283205066
1 4 ~516533297
1 5 84511566
i 6 =14086889
b3 7 2365967
1 8 =398017
1 9 66783
1 10 -11136
1 1 1827
1 12 ~245

SIN

~28685093497
160175750664
-24035014525
3743618524
~598881638
96617531
«155156%59
2438500
~364061
47919

-3953

=848

=-21987
107817
-528871
2626021
~13205628
673423549
~349286079
1853243006
~10174502822
58862293100

~380255199016

24607948341
185699678144
~18691211525

37714880868

~4037451117

481442251
«58798306
7048744
-781824
69844
~1861
-1328%

502

-132

EVALUATION OF THE SERIES

E = 80.0000000000

ALPHA

BETA

ENE OUTPUT

UNPERTURBED

7.0710678118F-n1

()]
1.0000000007F 00

0
1.0000000009F 00
1.0000000000F 00
~7.0710678118F~01
-1.4142135624F 00
4.1827439227% 02

&

NN RN NRV NN NN NNNRDNN N
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76276111038 « (E«SIN(E)=BO®SINCED))

[ 38 .Ccos
.12 -22605
-11 64266
-10 «189739

-9 555290

-3 ~1539407

-7 3752486

-5 ~6470129

-3 ~2824908

-4 92137645

-3 ~477346760

-2 762108197

-1 429096181

n 331172366
1 ~103323835
2 -26939283
3 ~15623625
4 6126680
3 -1603778
6 362191
7 -75506
[ 14915
9 «2825

10 515

11 -87

12 1

ete.
PERTURBATION
7.3143459883E=04
-2.54939755526-03

1.4946540171E=03
3.1952645720E~04

-%.50838331396-04
4.94734022166°04
4.9363897422E=04
1.36828314366=03

2.1180003860€E=02

SIN

-15658
59899
~235876%
935866
-3693860
14353117
~54184411
154805948
-640086722
1728563395
-2142913678
153986597
32410592
14354473
994828914
2424991
~1762946
319984
~27736
4265

2943

~-987

268

=68

10

PERTURBED

7.0783841579E~01
~2.5493975532E-03
1.0016946540E 00
3.1952645720€~04

9.954491616%56-01
1.0004947340E 00
~7.0665314221E~01
-1.,41284527%82E 00

4,18295%57228E 02

3 -12
~11
=10

NI
NADNCNE O

PR e T T R R R R ]
[
VBN RBGUN D

e
N o

cos

896

-2826
7850
=16946
13979
106393
«67999%
1472965
8611642
-937203¢€2
245666128
-126849650
252154856
~40169326
34555371
~6335954
965692
-126243
13297
-747

«129

62

-16

3

2

SIN

1213
~5266
21645
-83083
288848
~841133
1453152
3687268
*57527793
365656143
-1091265337
52652385
=147578653
7354419
~11166271
1342825
-67226
-8622
2752

-236

-84
50
-17
4

1



- 88 -

3. THE RESTRICTED ELLIPTIC THREE - BODY PROBLEM

by J. Waldvogel

3.1 __Theory

In sections 1.1.2 and 1.2.2 the restricted circular three-body problem has
been considered (computation of a particle's orbit in the force field of two at-
tracting centers - referred to as earth and moon - on the assumption that the
moon's orbit about the earth is a circle). In the 3-dimensional case the simultane-
ous regularization at both attracting centers could be carried out by the use of

the B3-transformation.

In the sequel we develop the regularization of the more general restricted

elliptic three-body problem, but we content ourselves with the important points of

the methods and proofs. A detailed analysis is contained in [4].

In the restricted elliptic three-body problem we again consider a particle of
negligible mass moving in the force field of the earth and the moon, but the moon
is allowed to move on a Kepler ellipse. The fact that the particle has negligible
mass 1s the only assumption distinguishing the restricted elliptic problem from the
general problem of the three bodles.

By means of a transformation to a suitable coordinate system the differential
equations governing the motion of the particle in the restricted elliptic problem
may be transformed to equations which are very similar to those governing the mo-
tion of phe particle in the restricted circular problem. Consequently, the simulta-
neous regularization of the restricted elliptic problem at both attracting centers

may also be carried out using the B3-transformation.

3.1.1 Equations of motion. Let 72 be a particle of negligible mass moving in

3-dimensional physical space. The forces acting on the particle are the Newtonian

attractions of two attracting centers - referred to as earth and moon - having the

masses m, and m, respectively. As these point masses are not influenced by the
particle, they move about their center of gravity @ on Kepler orbits. Only the

elliptic case of this Kepler motion is considered here.

We introduce a rectangular coordinate system 7%,, 72 75 with origin O, ro-
tating about its 73—axis with angular velocity @ 1n such a way that the earth
and the moon always lie on the ?%,-axis. Thus the qy,yk-plane is the orbital
plane of M, and m,. The varying distance between the earth and the moon 1is de-
noted by &. Let yw be the true anomaly of the Kepler motion; this may be defined
as the angle between the direction from the center of gravity to the pericenter of
the moon's orbit and the positive %,-axis (Fig. 3.1). The orbit of the moon with
respect to a rectangular coordinate system centered at the earth (with axes of

constant direction) is referred to as the relative Kepler orbit.
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Fig. 3.1. The restricted elliptic three-body problem.

From the theory of Kepler motion [6] we recall the relations

ly)= —L | (3,1)

(¥) o — |

dy _ gy N/ ,

7% w Zl (3,2)
Here .

A2 = f(m,+ m,) (3,3)

is the gravitational parameter, I the gravitational constant, and P and € are
respectively the semilatus rectum and eccentricity of the relative Kepler ellipse.
In order to state the relationship between the true anomaly W and the physical
time t we also introduce the eccentric anomaly £ of the relative Kepler ellipse,

defined by
£ I//—e to ¥ ~-E£| <« . 3,4

Then, introducing the semi-major axis Q@ of the relative Kepler ellipse given by

@= 7l
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Kepler's equation
3 .
At = a  (£- e sinE) (3,5)

enables us to compute ¢ from a glven value of E.

Finally, in terms of the mass ratio /.4, defined by either of
my - pu(mytm,), m, = (1-p)(m,+m,) , (3,6)

the coordinates of the earth and the moon are

(-« 0,0), [((1-p)¢,0,0) (3,7)

respectively.

In order to establish the differential equations of the particle's motion in
the coordinate system D¢s Pes 7M3s WE 1ist the forces acting on the particle per
unit of mass (denoting differentiation with respect to physical time Z by a dot):

centrifugal force (w"y' , wt 72 0/

Coriolis force [2&)7}, ~2wy,, 0)

force caused by the : .

angular acceleration (w Nz » W 71 o )

gravitation (—/fzgf , -H* g? , - Kzg; } )
t4 2 £

Here ¢ 1s the gravitational potential

(3,3)(3,6) b= - ’—/;éf - ho (3,8)
7 2

and 0, and ., are the distances of the particle from earth and moon respective-

1y, glven by

Pr= Ve p &+ 0208 5 = (g rpl-C) 7 75 (3,9)
The equations of motion of the particle are

7"1+ Zwy', - wzy,_ + w 7 = = KL%% (3,10)

7 - - Kl%’}‘i .

As Scheibner [11] suggested in 1866 it is possible to reduce the restricted
elliptic three-body problem to the restricted circular problem by simple substitu-~
tions of the variables. For this purpose we introduce into (3,10) the true anomaly
¥ 1instead of the time as independent variable:
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(3,2) a4 _ oy (3,11)
dt Ly ’
Denoting differentiation with respect to ¥/ by an accent, we obtain
N Ve °* 2 L4 / V4 .
7= wn’, % = w S+ ww'y”, =/ 2,3.

Using these relations in (3,10) we find

w:.?'l_f_ ww’y,’—zau"%’— 5017, _ ww/7z - _ KZ 2¢

Qy,
Wyl + wed y + 200"y - w‘72 + wed g, =~ /\’15; (3,12)
2
4 /7, zgaé
w + wa = - A .
73 73 973
Taking into account
3,2 w __, €
( ) w 2'?' ’
(3,12) can be written as
r_2¢ . £’ K 2%
v e 2%~ t25 w* 29,
_,& , _p &, - _ k2D
7n 250 +29 - =257, & on (3,13)
e . _ A2
73 —Zf 7" O_UE @73 :

Following Scheibner's proposal we further introduce the dimensionless varia-
bles Y; defined by

7 = Cy im7,2,3 (3,14)

and restate some of the preceding results (in particular the differential equations
(3,13) ) in terms of these dimensionless variables. In the Y:-system the earth and
the moon. occupy the fixed points

(3:7)(3:14) (—[(1}0, O) P f’—/u, o, 0/ (3,15)
respectively. It is convenient to introduce also the dimensionless distances
/oy /O
e 2T e

which are the distances of the point (39,)a,'y3) from the points (3,15):

(3,9)(3,14) /7 - 1@4-/4/"-*){‘4-)3‘ >y = l/();+,u—//"+)ﬁ"+)j," . (3,16)

Remembering that € 1is a function of Y, we obtain for the derivatives of ?2 the

expressions
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(,18) =+, pl=y'* 26+ %, , =-152,3.

Inserting these into (3,13) yields

74 7 2 :;¢5
yr"z)’z’*[?é"“zfze/z“’/f' - 'e/cr(f 27
2
2
_71 +2_)'1 'f‘[z,’ '2((/ /_/)’z = _'e%_ 9;2 (3,17)
t> 2 2 E?Qb
X!l +/? —2/?(:/ ./),3 == g/:)z. 27,
By using the differential equation
7117 / 7
(3,1) (?/ teT p

satisfied by é—, the expression occurring twice on the left-hand side of (3,17) 1s
’ /12
£ _,;g(lf// —f - £
¢ £ r

Furthermore the common factor on the right-hand side of (3,17) may be written as

reduced to

Kt 53

(3,2) w? P

By finally substituting the dimensionless variables into 45 and its partial deriv-

atives,

¢7",’%/—“‘-’i)

26 . 128 _ L (_a ﬁ} i=12,3,
?7‘ € oy, % ox
the differential equations (3,17) of the restricted elliptic problem are trans-

formed into

.>’f ‘2)’1 ..__4 (_!—_& ﬂ_/ )’f]

~ Loy,
¥ or2y ___[a (L -L)- ] (3,18)
% - A L) -] %

In the restricted circular problem (€ = 0) € 1s constant (—,o ); therefore
the factor 6766 1s the only correction to be made in order to generallze the cir-
cular to the elliptic case. In the circular case also @ is constant; thus the
transformations (3,11) and (3,14) are merely magnifications of the time and space
variables. These transformations then do no more than to introduce the special u-

nits defined at the beginning of section 1.1.2.
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In the next section the differential equations (3,18) will be regularized. Ac-
cording to the methods given in section 1.1, we require quantities which correspond
to the potential function & and the perturbing forces L% of the table following
(1,16). Thus, our intention is to find functions (¥, Y., Ys, ¥/ and p; (y,;y;,y,)
(= 7,2,3 ) so that (3,18) may be expressed in the form

’ U
Xe -_9)’6

This may be accomplished as follows. We notice that the expressions in the square
brackets of (3,18) are the partial derivatives of the function

+ /D‘- , l - /,2,3 . (3:19)

* 7 rt 7 rrt
- — - — L% 2py S LA
U -#(5+ 5 )~ 1l +5) (3,20)
with respect to y,, ). and D) respectively. As the factor
r 7+ @ cosyp

does not depend explicitly on )/‘-, the potential U 1is the function

»
u - U + 4yt

7+ e cosy ( )

T T 3,21
U - IErF) Kt E) s
7+ € cos Y 2)’3 )

For the special case of the restricted circular problem (€ = O) 1t coincides with
the potential (1,62). It should be stressed however that &( depends explicitly on
the independent variable .

The perturbing forces Pe acting in the restricted elliptic problem are, ac-
cording to the equations of motion (3,18) and (3,19),

= 2)'2, s P _2)/1/’ Ps= 0. (3,22)

This force may be regarded as a modified Coriolils force; the formulae (3,22) are
similar to (1,30).

3.1.2 Regularization. The potential (3,21) occurring in the restricted elliptic

three~body pfoblem is singular at the two attracting centers (3,15). Because it de-
pends explicitly on 3, the theory of section 1.1 (in particular equations (1,20),
(1,23),(1,24) ) must be slightly generalized. But the method being used in section

1.1.2 in order to regularize the 3-dimensional restricted circular problem at both
attracting centers can still be applied here. Thus we again introduce the four gen-
eralized coordinates Vi by formula (1,64):



Yo = l[v + V‘(V‘ £) - 3. ] (3,23)

A

7 +
1]y, »uCi=2)
The functional determinant & of this B3-transformation is given by

r.sc.

X"

v, +vz+v

(1,65) D = "1 (3,24)
’ V,"+ Vzl.+ ‘{,L

where the distances 7/, , /; must be written in terms of the VA

-4 Litd s e n-f et rue @ e v (3,25)

» .
Vv'+ v+ vt Vv e v vy

For our elliptlic problem the regularizing independent variable s plays the role

of a "fictitious true anomaly" and is defined by

(1,18) dy = AND-ds . (3,26)

As 1in section 1.1, A= )\(Vn e, V5, V¢) is a scaling factor to be specified in the
sequel. Now, the equations (1,22), adapted to our notations, have the form

(1,23) / dv/ If 90 + 2L 9&(

_Z\_Z' N s ov, ~ Pq ., /=123,4%, (3,27)
7

where &( 1s the function (3,21), #> is the squared "velocity", that is

aC

and the 99- are the components of the perturbing force (Coriolis force) in the
parametric space. The rules (1,67) for computing these forces still hold true, but
the scaling factor A must be taken into account; this yields

&
2 4% 9,)".'
% - ﬁ; (bybau=bybu) sl Sy (3.20)

As in section 1.1, the final step of regularization is to eliminate the velocity
¥ from (3,27) by the use of an energy equation. But we should remember that our
potential & 1s not conservative, and therefore a vis viva integral like (1,11)
(Jacobl integral) is not available.

In order to bypass this difficulty we propose the following method. Multiply-
ing the ¢ -th equation of (3,18) by )42 summing over ¢ and taking into account
(3,20) yields
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NS A / Lur
a(lp(2 ) dy 2./ 7T+ ecsy dy o. (3,29)
Writing the last term on the left-hand side as
Ttecasy Ly f+ecoszp f+eca.«.zp}
equation (3,29) becomes
%) ynd !
dlp( } dqo(f+ecoszp * A dy (/+ew°zp} : (3,30)

By integrating from the initlal value &/, of the true anomaly to a general value
&, equation (3,30) may be brought to a form similar to (1,11):

LU - hr W, (3,31)
where
W*= /a‘a* € snyp L (3,32)
% (7+ e cos p)*

1s an integral replacing the work DV'of section 1.1. The quantity A 1is an energy
constant and may be computed from the initial velocity ¢4 and the initial poten-
tial ¢, at instant 2, by

(3,31)(3,32) A = %l+ U, . (3,33)

*
Although &(’ is infinite at collisions, the integral W ™ exists for every
finite value of . This can be shown by substituting the fictitious anomaly s in
the integral (3,32):

* _ . x e scn
(3,25) W™= /) pur = R (3,3¢)

Here the expression
)\ 7 .3 3
/\'Da*‘ml[‘("ﬂ)("z*‘f’; ’2)—,&(("7*2‘06/] (3,35)
7 2 3

no longer has singularities at the attracting centers, provided that A remains
finite. The denominator ¥+ ¥+ V,® 1is in general non-zero: it vanishes only if

the particle is infinitely remote. This proves our statement.

The above mentioned final step of regularization is now carried out by elimi-
nating ©* between the equations (3,27) and (3,31). The result is (replacing the

2, by (3,28) )
L&) - F o0

2 _ oLy, * 20 :

(3,36)
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{ef. (1,68)). This system of differential equations must be integrated numerically,
and, in order to do thls, the values of % and Ivf’rmust be known at every step in
the integration. Therefore we add the following two regular differential equations

to the system (3,36):

¢1]~/' - . " e sny
(3,34) _15—— A-OU (7+ e cos w)z ’ (3,37)
(3,26) v = D . (3,38)

This terminates the regularization procedure. Equations (3,36),(3,37) and (3,38)
form, in all, a simultaneous system of 10 regular first order differential equa-

tions for the unknowns V-, oLy /s (/= 1,2,3,4), W7, p as functions of s.

By using Birkhoff's transformation, the regularization of the 2~dimensional

restricted elliptic three-body problem has already been performed by Szebehely and
Giacaglia [12] 1n 1964. The result of these authors was a system of integro-differ-
ential equations.

According to section 1.1.2 the scaling factor )\(V,, i, Y%, lﬁ.) might be chosen
as A=1. In this case the equations (3,36) become very similar to the equations
(1,68) governing the restricted circular three-body problem. Equation (3,38) then
becomes

nn
: L 8 b 3
Wth+y

dyp = oLs . (3,39)
In order to integrate the system (3,36),(3,37),(3,38) of differential equations nu-
merically, the independent variable $8 1s chosen to have a constant increment. As
(3,39) shows, the corresponding increments in ¥ become small whenever one of the
distances 5, /3 Dbecomes small (i.e. whenever the particle comes close to the
earth or to the moon). This is the most important advantage produced by regulari-
zation.

On the other hand, however, any variation in the denominator n‘* &"* %1
modifies the step length of . Since the V,-axis, whose equation 1is %L*'%f+ 5‘
= O, corresponds to infinity in the physical space {cf. (3,23)), the denominator
of (3,39) approaches zero if the particle escapes to infinity. From a numerical
point of view a small denominator should be avoided. Our numerical experiments show
that v*# 13 + ¥ may approach zero even if the particle is not extremely far a-
way in physical space. In such a case the increment in % becomes very large with-
out any physical reason, and sometimes the numerical integration breaks down.

In order to avoid extremely large steps of %, in what follows we define the
scaling factor A as

A= irylet (3,40)

(in the sequel A 1is used as an abbreviation for »‘+-v£=+ K;'). By this choice
equation (3,38) may be written in the form
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dy = r;rpds
which avoids the difficulties associated with (3,39).

In section 3.1.3 we describe a method that may additionally be used in order

to avoid extremely small values of the denominator V,‘+ V,_"-r‘- \_/," .

For our choice of A {cf. (3,40)) we now proceed to establish an explicit
form of the system (3,36),(3,37),(3,38).

2
We multiply equations (3,36) by A ; the first term becomes

Il ) LY Ay 1 £ dy,
>‘ by d,s) Ast s T; a—"d‘s , (3,41)
where
2A
)\“36\/‘" 4-7,2,3,41
A, =2v,, M=2V, Ay=2Vv;, A, =0. (3,42)

The second term is transformed as follows:

AL%_[D(“_A)jgh—f_)\z av(-%)+ )\lg%[o(—%i—/ljj: (3,43)

ecosy " Y
where @) is an abbreviation for the expression on the right-hand side of (3,35):
»* J
Qu NOU = ~(1-p)(r3+ 31 1) = pulry+£575) . (3,44)

In order to carry out the partial differentiations required on the right-hand side
of (3,43), we introduce the quantities

Cle or;
o= ray N Tl
rw=2VA+(/A-1)y, fy ==EVN+ (VE-n)y,
l92 = (VA-r)v, T2 = WVX-r)va
e (VK=r7) vy ros = VX -r3) s (3.45)
770 = oy o= e VR v
as well as
, 2oa
3 f§ /~J 3 2
& ==l(r) 20571 # (14 z‘)]’?,' ()1 F) 25 [, (346
and 20 (3,47)
2 Ll
0/.-_= A—é_\é-- /}_,?/-ﬁ/;fi/.——,;,iA/- .

Then we obtain
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12
X35(%) = @ -ey.
X [o(% - 4)] - 0/ (L -4)+ rirsyy Nby .

By using the symbol 5,‘ defined in (1,67) as well as the abbreviations (3,40),

(3,42),(3,44) - (3,47), the regularized system of differential equations then be-
comes

4
dl' 2 od d
(2,26 L% =% ) {6a A, - )4, )b, + fo LR
T34

(3,48)

ds ¢ ds As
1 (g-a- by + h- 2 WG,
7+ e cos 17
( 4; = Kronecker's symbol) (3,49)

» .
(3,37) W - Q@ & Sny
(7+ € cos . )*

(3,38) Z% = ,

Finally, in order to evaluate the derivatives 6/1 , we notice that by introducing
the quantities

’ 7
L=V Vem 7%, VR AR B (3,50)
and P Y 7
- Vi 33 +
o, = V,(v>\+ ety = ﬁ%zﬁ , ety = _«&x_fﬁz (3,51)

the By-transformation (3,23) may be written as

Y= Fopr i), = Flurxa), yy=3(nres). (3,52)

Differentiating these equations while taking into account (3,50) and (3,51) yields

Ao, = 304+ #)) —et, v, rb,, = — oy v,
Ao, = —, Moy =7 (v} -F+N) -\
Ay, = X Y Abyy= -Fy -V
Mby= %y \ by = e
(3,53)
Aby, = 7
Aby, = v — %3V
>\633=%(L2‘Z+A)—°‘3V3
>‘534"‘ ﬁs

In the sequel the points (2‘1, 0,0,0) and (-%,0,0, 0) are called centers (in
the parametric space). By the By-transformation (3,23) each of them is mapped onto
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one of the attracting centers in the physical space.

If the point l// is near one of the centers, the Abjf (/- 2,3 ) appear in

(3,53) as differences of two almost equal quantities. The following manner of com-
putation avoids the loss of significant figures.

fo= E[-(ied)vi-2) - G- e ] (3,500)
Moy = A0 WU+ E) - Ay
Abz:.= l /‘4‘ — X Vy (3,532)

Ab_,,= —ﬁ¢ X3V .

Assuming that the regularized variables Vs dty/ds, W: ¥ are given for a
general point of the particle's orbit, the physical coordinates, velocity and time
can be computed as follows:

a) The B3-'cransforma’cion yields the dimensionless coordlnates };, and with e
determined by (3,1), the physical coordinates 7 are obtained from (3,14).
b) The derivatives of Yy, with respect to 2 are obtained from (1,19),

X.,g gf = ,;i’_z Z_b‘:/%:‘ ) 6‘- ,,2,3 N (3354)

where the 6‘7 are given by (3,53). A formula for the computation of the velocity
d,y‘./a(c‘ in the physical space can be established by differentiating (3,14), tak-

ing into account (3,11),(3,2) and (3,1):
7= w(ex+ ) = R [FY - (L) e/
. Ve - e _. .
), = K ———_)" +—S£’I¢')/‘. , ¢ =f,2,3 . (3:55)
7 [g Ve /

¢) The physical time f_ may be computed from % without integrating a differ-
ential equation by using the formulae (3,4) and (3,5).

We now add a few remarks concerning initial conditions. From a given initial
anomaly ,, initial position 7, and initial velocity 7}- the initial dimension-
less coordinates Y; may be computed by (3,1) and (3,14). The formulae for the
computation of the initial derivatives _y‘-’— a/y‘- /a(;p are obtained by solving
(3,55) for ):.’ and using (3,14):

. & - _ e . .
YT RE LT SR, =t (3,56)
The regularized coordinates \9 may be computed as described in the sentence fol-
lowing formula (1,69). Then, according to (1,19), the initial "veloeity" a’y/ds
is given by

!—‘.’l—: = Z /— /,2,3,4 . (3:57)

1 ¥4
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It may be verified that the components of the velocity computed by (3,57) sat-
isfy the relation

dy, 4
v, v, —X
"% 7o T Pk ‘s *+ P
where /3, ,/E, are given by (3,50), and ﬁ4 may be defined by (3,50a) or by

04 n)

Equation (3,58) is the above mentioned non-holonomic condition belonging to the B3-
transformation. If this condition is satisfied by the initial values of the parti-
cle's motion, it is satisfied by the regularized variables of this motion at any
time (i.e. for any S ). The proof of this statement is contained in [4].

a(v, a[\@

ﬂ# = ’ (3,58)

Finally we collect the formulae of this chapter in order to establish a set of
guiding rules called

Fifth procedure
(Solution of the restricted elliptic three-body problem from given initial

values by numerical integration of the regularized differential equations.)

Data
Universal constant:

J/ gravitational constant.
Constants_characterizing the earth-moon system:

m, , may masses of earth and moon respectively.

Compute:

A= |Jp(m, » m,_] (gravitational parameter),
s

-k (mass ratio).
H m,+ My

/o, e semilatus rectum and eccentricity of the moon's relative Kepler
ellipse about the earth (>0, 0< € < 7).
Compute:
a = —,—Lz_ (semi-major axis).
-e

Initial data of the particle's orbit:

Yo initial true anomaly of the moon in its relative Kepler ellipse.
¢s> %2, 73  initial position of the particle in the ro-
. . . tating coordinate system (3,59)
Trr 72, 7s initial velocity described in section 3.1.1.

Initial values for the regularized system
Compute successively the following quantities (which are all evaluated at the in-

stant ¥,):
Initial distance earth-moon:
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Ve
Initial values _Y;__and derivatives w of the dimensionless coordinates:

= - O 2 e 0 o e ot o s o e e o e B e et e e et e e e e . " "

D/ % ’ )’:'/ = __(— 7.( o S Yy, 7;’ ’ = 1,2,3. (3,60)

2 2 y"
o £ s ) e B 5
2 2 z (3,61)
- T A=-g U

are computed by the following set of formulae (obtained by reading table (1,31)
from bottom to top):

X,‘= /-/- .-ZL"',_L__/ . )((: - i 4.= 2)3 . (3362)

3 2
) r

Inverse KS-transformation {cf. ond procedure):

s a2 _ 1 t o wt o L
u'.,t.u‘ ‘-2-{/'*,\',/ . U2+u3 —z(/‘ x,)
X X, Uy + X3 U 2
Uz= Xzaff‘ 3“1 , u, - 2 “2 X ] 3 , S o= in i
r+ X, r—X,
Uy = X3 Uy = X2 ls w = XY= ds
3= ’ 4 IS —-x ’
r+ Xy 7

Take the left- (right-) hand set if x, » 0 (X, < O) and choose «, (us) arbi-
trarily. Finally the regularized coordinates are

175
w, -7 ] o4 (3,63)
V, = * 14 vV, == , K}
7 2 2 T L 3

£ (= 1)*+ )+ ujy + 7 1) wf Uy U

S =2,34%.

Initial derivatives oy /s

By applying the formultae (3,50),(3,51) and (3,53) with
A= yie ey

the values of the coefficients ()\ b‘_-/-) at instant ¢, are obtained. The initial
derivatives d\;/d_s are then given by

dV - Z(,\ . (3,64)

Cmy

The initial values of W' and ¥ are O and 3, respectively. At instant 2,
the independent variable § may be chosen as §= O ,
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The regularized differential equations

for the restricted elliptic three-body problem are given by equations (3,49). In
order to compute all the auxiliary variables occurring on the right-hand sides of
these equations, formulae (3,40),(3,42),(3,50),(3,51),(3,52),(3,53),(3,25),(3,44),
(3,45), (3,46),(3,47) must be applied in this order.

Motion in physical space

Whenever information about the motion of the particle is wanted, the results ob-
tained in the parametric space must be transformed into the physical space. In or-
der to do so, the quantities f‘,,f;,,\,/&,,ﬁ,,ﬁ,,xp (,\b‘}-) are first computed from the
actual values of Vv, dv./ds, W", u by use of (3,25),(3,40),(3,50),(3,51),(3,53).

The values Y: and derivatives )Q’ of the dimensionless coordinates are then

given by

Yy =E-u+ir,), y= S(ures), Y= F(vu+es),

&
Ay oy .
-x., - ~ (Abf'/} 2—34 ’ e 1,2,3 . (3,65)
12 J=1
With

- —L2
7+ e cos P

tem Cx Gom (L e Y mande (.69

In order to determine the physical time ¢, at which the particle attains this po-

sition 7;, first compute the eccentric anomaly £ from

E‘[/L—_E 2 -
?Z /+eé72- ’ lw-£l < 7,

and then 7 by Kepler's equation
3/2

t =~ S (- esnE) .

Checks
Together with the transformation into physical space, two checks may easily be
carried out:

a) The non-holonomic condition (3,58) must always be satisfied:

o

EF S LT AL S et
b) The equation
kN
_f_i dy)*, € B _WS4)=o0 3,68
zx/-,(ats/ tE@ e nn(Z - W e

(which follows from the energy equation (3,31) by taking into account (1,20) and
(3,21) ) has to be satisfied at any time. The quantity & 1s given by (3,44).

o —— o — - —
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3.1.3 Remarks. If a solution of the differential equations (3,49) passes through

one of the two centers (i‘i, 0,0, 0), the corresponding orbit in the physical
Space passes through one of the attracting centers. In this case the particle col-
lides with the earth or the moon. As a consequence of regularization the deriva-
tives ‘{3?/Q{° have finite limits even at collisions (in the physical space the
the components of the particle's velocity generally tend to infinity if the parti-
cle collides with one of the attracting centers).

In order to discuss the two types of collisions together, we introduce the
sign ¢ which takes the value +/ or -/, according as the particle collides with
the moon or the earth. The attracting center with mass

[+ o (r-1]](m, +m,) (3,69)
then has coordinates
S/
72’= (.______2 _./4/( , 72_-73= o) (3,70)
in the physical space. The corresponding point in the parametric space is
o
V=%, B=Vy=V =0. (3,71)

We now consider a collision of the particle with the attracting center indi-
cated by o . Then

&
V—%, %—0, V—o0, VY—o0.
According %o (3,25),(3,40),(3,44) the following limiting values are obtained

1+ 0 11— s

A=t h~3T. n LT, Q—-(Frow-4).

Substituting these in the energy equation (3,68) gives

i(dv)z frol-3) (3,72)
= ds 2(1+¢e cos Yy, )

where % 1s the value of the true anomaly at the instant of the collision under

consideration. Thus at a collision the limit of the squared velocity in the para-

metric space is finite and does not depend on the direction of the collision.

In the case of a collision, the velocity can no longer be transformed by using
equations (3,64) and (3,65), because the physical velocity becomes infinite and all
the 69, vanish. However instead of mapping velocity vectors at one of the centers
in the parametric space, we may establish a correspondence between the directions

of vectors at these centers.

We add to the position vector (_—26-., 0, 0,0) of the center given by & the

small increment

(N
-
)

(v, v ), (3,73)
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Ly dvs ad , 2k
ds ’ ds ds ' ds
In order to obtain the corresponding increment which is denoted by

at this center.

which 1s parallel to the velocity vector

(cy, %> Y) (3,74)

the polint
(s(4+%), %, %, Y) (3,75)

is mapped into the physical space by the B3-transformation. Substituting (3,75) in
(3,23) and expanding the results in power serles at the point (%-,o, 0, 0) yields

{+o0 -2 =2 -2
B it I A7l A I VA
- - terms of 3rd and
M= 2(V, Vv, - »V%)+
i - higher order
Ya= 2(Vv, v + G )»r -+ -

By keeping the direction of the increment (3,73) fixed, but allowing its length to
tend to zero, it follows that the desired increment in the physical space is in
fact given by (3,74) with

— -2 —2 - -_2

Y= % -n-v+i

Vo= 2(v, -4 Y,) (3,76)

Y= 2(% v+, V)
This is exactly the KS-transformation (1,44). Since the )7‘ are homogeneous func-
tions of the 17/ (a1l having the same degree), the transformation (3,76) is a map~-

ping of the increments' direction. For that reason the length of the increment

(3,73) may now be chosen arbitrarily; for example, simply

v, dv . . = dV' . 3,
V ds s \9 751- » /B 2,3)4‘ . ( 77)

The vector (3,74) (with 5_/‘- given by (3,76) ) then indicates the direction of the

collision under consideration.

If the motion of the particle is started exactly at a collision (with the at-
tracting center given by o), one is concerned with the problem of finding an ini-

tial velocity vector {i‘{f- ’ f{:‘ s %{1, ﬂ‘/ corresponding to the given direc-

tion (a'_y,, _y,_, X, ) of the collision in the physical space. This may be done by
applying the inverse KS-transformation (1,47) to the vector (¥,, Y., Yy ). If for
simplicity this vector is assumed to have unit length,

- —2 N
YN+t =7, (3,78)
the following formulae are obtained:
2 _2 7 —- - - 7 —
v+, -E(f+_y,/ V, * Vv, -3_(/—_71)
v o« 2t hY% V, o HerX Vs
= 1 v
o 7+3, or 7-5, (3,79)
- = - = YoV — ¥, Vi
v - D=9V v o« DBz B
3 ¢ 1-Y

f-ry,

Y S S
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The vector (0’7,, \?,_. \—/_,, V, )} is parallel to the initial velocity vector in the
parametric space and also has unit length. Thus, according to (3,72), the initial

velocity vector is

Ly dv du da) V}+f(ﬂ-£/ oV s Y,
ds > ds ? ds? 2(f+ecos¢°}( 772" 5’9).

Modifications of the fifth procedure for the case of an ejection

(3,80)

(the initial position of the particle is one of the attracting centers).

Only these parts of the Bth procedure, which must be modified in the case of

an e-

Jection, are recorded here. The subtitles are the same as in the Sth procedure,

Data
Initial datas

The initial position of the particle may now be indicated by the sign o:

+1 starts at ma2 (moon)

— {-'f } , motion {m, (earth)

(ﬁb, ?‘, éb) indicates the initial direction of the particle's orbit.
Furthermore the energy constant 2 must be given (cf. (3,61a)).

Initial values for the regularized system

Ve
Initial values ¢ and derivatives e of the dimensionless coordinates:

c+7r )

Y= Fr g, Y= Y=o

7 we now mean the components of the unit vector indicating the

By pA

initial direction ?

7 _____Zi____ (= 7,2,3.

y‘. = + 2 e 3 -2 ’
Vgt 2+ 77 J

The formulae (3,61) can not be used. The energy constant A 1s
given by the initial data.

[S——

-
Vi= 3, Y%=Vsi= VY% =0

(3,5%)

(3,60a)

(3,61a)

(3,63a)

It is not necessary to apply (3,62) and the inverse KS-transformation (1,47).

Initial derivatives o\, /ds :

The coefficients (‘Ad;) cannot be used because they all vanish.

With _ L _ , _ 4
Y=Yy, Yo= D2, V3= )3

compute the V. from (3,79). Use the left-hand or the right-hand

7/
equations of (3,79), according as Y, 1is positive or negative.

The initial derivatives are given by

(3,642)
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dv,; dvy oy / l/f'*‘"(f‘ £) = -~ - =
L5 ' ds s s 2(1+ e cos y,) (G-V"K“V"V"):
where 1y, is the initial true anomaly.

Referring to the remark following formula (3,40) in section 3.1.2 we now give
a few words on avoiding small values of the denominator V,¢+ l‘/:'+ l{," during nu-

merical integration of the regularized differential equations (3,49).

As it 1is mentioned in the fifth procedure, there are generally many points in
the 4-dimensional parametric space which are mapped onto the same point of the 3-
dimensional physical space by the B3-transformation. The set of points (w,, w,,u(,,w,)
having the same image as the fixed point (v,, Va, Va, Y% ) 1s called the fibre pass-
ing through the point (V,, V,, V;, ¥ ) and 1s given by {cf. [4], page 26)

w, vy

wel 7 Vecosp # Vg snp (3,81)
wy | PHE) - (pf)asp + vpsing | ~Vasing + ( casp

W, _ heasp # (o'=f) sing

where /oz is the expression

2 z 2z 2 b3
P =V trvat Y

In order to obtain all points of the fibre passing through the point \j » the para-
meter @ must take all values in the interval 0 € p < 2X . In general the fibres
are circles, the only exceptlions being the V, -axis v, e V,_ = O and the two
centers (tf,o,o,o).

For the following discussion, on the fibre circle passing through the point v
we introduce the points A and F . They have the property that, of all the points
belonging to the considered fibre circle, their distances from the v4-axis, d/v
and d, , are the least and the greatest respectively (nearest and farthest point).
There are also fibre circles, where all the points have the same distance from the
Ve -axls, but this case is not important here. The relation

. !
holds true for every fibre circle.

Let us now consider for a point V; 1lying on an orbit in the parametric space
the fibre passing through this point. If for v the denominator

2
d - v'l+ Vzl'f' V;.
/l-i’ it follows from (3,82) that the point Y 1lies near the
point N of its fibre, In order to avoid a close approach of VW to N we pro-
/

pose the following method.

is small compared with

If the denominator &> at a point (v, Vo, ¥4, % ) of the orbit becomes
smaller than a certain limit Cz',z << 1 , the motion in the parametric space 1is
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stopped and restarted at another point (W, Wi, w,, W, ) of the fibre passing
through v
and a formula for computing the derivatives %"2 from _:‘TS‘.? may be obtained by

differentiation of (3,81) with respect to S.

. The coordinates W, are given by (3,81) with a suitable value of @,

The consequence of this procedure is not recognizable in the physical space
because the B3—transformation maps all the points of a fibre onto the same point.

A suitable choice of @ may be obtained from the following statement, [4]:

We consider equation (3,81) as a transformation (depending on # ) of the parametric
space onto itself keeping fixed the fibres. The special transformation that maps
the farthest point F of a fibre onto A 1is given by (3,81) with @ = Py = X .
On the other hand the transformation mapping # onto a general point (%, V2, Y%, Vy)
lying on the fibre of F 1is given by (3,81) with

¢=a/:7[l’;l+ Vi V;*(Vl;*f)zj- (3,83)

This information about the position of the point ¥ on its fibre may be used to
choose the angle @ occurring in (3,81) in such a way that the transformed coordi-
nates Mﬁ satisfy the inequation

2 2
R - A

Although this procedure may sometimes help to avoid extremely small denomina-
tors during the numerical integration, the singularity occurring when the particle
escapes to infinity is still present. But in practice the particle's orbit is of
very little interest at a great distance from the earth and the moon.

3.2 Examples

The fifth procedure is very useful for computing orbits in the restricted el-
liptic problem whenever the particle comes close to one of the attracting centers.
In order to illustrate this we give here some results of numerical experiments. All
the computations were carried out on the Control Data 1604-A computer of the Swiss
Federal Institute of Technology.

A computational program (referred to as SIMREG = simultaneous regularization)
for the calculation of trajectories in restricted three-body problems was written
in ALGOL. In its essential parts the program is a replica of the fifth procedure,
but the transformation to an inertial coordinate system is added. The numerical in-
tegration of the regularized differential equations (3,49) is always performed by
the Runge-Kutta method (single step method of error order 4),

The orbits resulting from the computations are displayed in two coordinate
systems; we refer to them as

a) the inertial coordinate system,

b) the dimensionless rotating system.



- 108 -

The inertial coordinate system 7,*, 7:, 7; has its origin at tlle center of gravity
of the two attracting bodies (earth m, and moon m,). The 7y -axis initially (at
time ¢ = O) passes through the attracting centers and is directed from earth to

moon. The 7: -axis 1s obtained by rotating the 7f-axis through the angle 3‘/2- in
the moon's orbital plane (in the sense of the moon's revolution). The 7,'~axis is
then chosen to form a right-handed rectangular system together with the two previ-

ous axes 7:, 7: .

The dimensionless rotating system is the coordinate system Y,, Ya, Ys; introduced

in (3,14). The origin is again the center of gravity, and the Y,-axls coincides
with the ‘7;-axis. The system rotates about this axis and "pulsates" in such a way
that the earth and the moon occupy fixed positions on the Y,-axis.

3.2.1 Transfer of a vehicle from earth to moon. In this first example the computa-

tion of a realistic orbit from earth to moon is described. In order to compute the
vehicle's trajectory by the program SIMREG, the motion of the moon had to be ap-
proximated by a pure Kepler orbit which yields values for the orbital elements of

the moon. This was performed by approximating a given exact ephemeris of the moon.

We are indebted to Mr. B. Stanek for this auxiliary computation. Only perturbations
by the moon have been taken into account. The resulting orbital elements of the

moon are:z

semi-major axis a = 382 100 km

time of revolution 7 = 648.61321 926 hrs
eccentricity e = ,05

initial true anomaly Yp = .3 rad

mass ratio A= .01211 68060 .

In all our examples we use "standard" units adapted to the earth-moon system

under consideration:

unit of length: a (semi-major axis)
unit of time 7—/2.71:' (3,84)
unit of mass : m,+ 7, (total mass)

By the laws of Kepler motion it follows that
P = 7— e (semilatus rectum)
7] = 2
m’ -+ m‘ -_— /
£ - 7 (gravitational constant).

In standard units the adopted initial conditions for the vehicle (in the rota-

ting coordinate system described in section 3.1.1) are

Ny = -.02182 35477 %, = 5.25062 2867
P2 = -.01299 03502 7?& = -2.01747 1424
7s = .00542 30458 %3 = B.94355 4806.
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ysh
005 )
moon's surface
Y |
970 975 980 B8 et Temze M
Unit of length = 382 100km (semi - major axis of the moon's orbit ).
The points of the orbit with marks correspond to equal increments As =.2 of the fictitious onomaly s.
At each of these points the moon's true anomaly y (in radians) is indicated.
Y2
.010-
005
|
1 99213
4 .99234
0 L e e e LN R BV R T 2
970 975 .980 .99259

Fig. 3.3. Detail of Fig. 3.2: vieinity of the moon.
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In Fig. 3.2 and Fig. 3.3 we show the transfer orbilt from the earth to the moon
resulting from the constants and initial values listed above. The trajectory starts
about 285 km above the earth's surface and collides with the moon's surface. If
this body is assumed to be a mass point, the orbit may be continued into the inte-
rior of the moon and further into deep space. The minimum of the vehicle's distance
from the center of the moon 1s about (/20 of its radius. After this near-colli-
sion the vehicle escapes with high velocity from the earth-moon system.

For the numerical computation of this orbit a constant step 4s = .02 of the
fictitious anomaly $ has been chosen. Due to the influence of regularization the
corresponding step z]yu of the true anomaly increased from 4‘10‘4 up to its max-
imum 6'10"3 between the earth and the moon and was finally reduced to 5'10’6 at
the closest approach to the moon. 143 Runge-Kutta integration steps were needed
for reaching the moon's activity sphere (radius = 57 500 km), and 160 more steps
were needed for the leg of the journey to the closest approach. No numerical insta-
bilities are generated by this close approach.

In Fig. 3.4 the true anomaly % 1s plotted as a function of the fictitious
anomaly S. %(s) 1s monotonically increasing, but it increases very slowly in the
neighbourhood of the points $ =0 and $ = 6.06 corresponding to the earth and
the moon.

V¥ § (radions)
2 —4
" 0
] Iclosest approach
(fo moon’s center
T |
I
] |
|
|
I
0 | 1 T Ll T ] |; 14 T T '[ T —
0 S 6.06 10 S

Fig. 3.4. The true anomaly Yy as a function of the fictitious anomaly s
in the case of Fig. 3.2.

The values of the left-hand sides of the checks (3,67) and (3,68) did not ex-
ceed 1.7'10‘9 and 6.5-10‘9 respectively after 500 steps. In order to obtain
information about the exactness of the numerical integration the same orbit was
computed with a new step length A4s = .04 , and two corresponding sets of coordi-
nates Y; describing the arrival on the moon were compared. The maximum difference
was 1.2-10‘6 . Thus the orbit computed with 4s = .02 1is exact to at least 6

decimal places.
Because the eccentricity of the moon's orbit, in this example, is very small,

we carried out corresponding experiments with a fictitious moon wm, moving in an
orbit of high eccentricity. The following input data were chosen (standard units):
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p= ma=.1, p = .36, e = .8, Wo = - <5
% =0 ?; =0
71=o 7.‘=‘-5
75 =0 s = 9.15 .

The resulting trajectory is displayed in Fig. 3.5. It is remarkable that the
vehicle reaches the moon m,, altough the initial velocity 1is almost perpendicular
to the orbital plane of m,.

The computation proceeds 1n the same way as in the preceding example. No dif-
ficulties occur because of the large eccentricity of the orbit of m2,..

3.2.2 A 3-dimensional periodic orbit in the restricted circular three-body problem.
Recently, R.F. Arenstorf [13] has computed famllies of plane periodic orbits pass-

ing near both attracting centers of the restricted circular problem. On the other
hand C.L. Goudas [14] constructed many 3-dimensional periodic orbits without close
approach to both masses. In order to make a first step in synthesizing the methods
of the two authors, we present in Fig. Q;g an example of a 3-dimensional periodic
orbit of a particle ejected from the first attracting center (earth) and approach-
ing very close to the second center (moon). About 100 preliminary orbits have

been computed by Mr. E. Sturzenegger in order to achieve periodicity. Up to the

present we have not been able to construct a 3-dimensional periodic orbit colliding
with both attracting centers.

The system of the attracting centers is characterized by the values (standard

units)
K= ma=.1, p =1, e=o0, w, = O.

The direction of the ejection needed for periodiclty was found to be
(-1, 0, .06874 215 )
in the dimensionless rotating system, while a value
A = -.82448 546

had to be taken for the energy constant. The half period tyﬁ. thus became

z/2 = 7.77403 9
(24 = 6.283... corresponds to one revolution of the moon) .

The orbit resulting from these input data 1s symmetric with respect to the
)4,>§-plane. This is a consequence of the facts that the initial position and the
direction of ejection are in this plane, and that the orbit intersects it perpendic-
ularly at the time z/2 . Therefore only half the orbit is plotted in Fig. 3.6 (the
projection to the },);-plane 1s a curve being covered twice).

A final remark to this periodic orbit is added. At ejection the velocity com-
ponent perpendicular to the )4,)Q-p1ane is small, but later, after the close ap-
proach to the moon, it is very large. This fact raises some doubts about the sta-
bility of the many classical plane periodic orbits if perturbations perpendicular
to the moon's orbital plane are allowed.
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3.2.3 Conclusions.

- From a theoretical point of view the B,-regularization of the elliptic restric-

3
ted problem is very well suited to the qualitative discussion of trajectories and

to obtaining information on the general behaviour of a three-body system.

- It may also be well sulted to feasibility studies on transfer orbits from one

celestial body to another, as for instance in problems of capture.

- For the exact numerical computation of transfers it 1s a disadvantage that the
two attracting centers are assumed to move on exact Kepler orbits. If this assump-
tion is not satisfied, one could use, at the beginning of the trip, KS-regulariza-
tion centered at the earth and switch at a convenient instant to KS-regularization
centered at the moon. We have no experience about the numerical behaviour of such a
method.

- It should be mentioned in this connection that A. Deprit and R. A. Broucke [15]
have suggested this idea in the special case of the 2-dimensional restricted circu-

lar problem by using Levi-Civita's transformation. They have developed a simple set
of formulae containing a switching parameter. The generalization of such a proce-

dure to 3-dimensional motion and to KS-transformation is obvious.
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4, EXPERIMENTS CONCERNING NUMERICAL ERRORS

by C.A. Burdet

4,1 Configuration of the reference orbit

(with which all numerical experiments have been performed)

At the time this paper is being written, complete results of numerical experi-
ments are only available for unperturbed and circular Kepler orbits (eccentricity

= 0) and we shall therefore restrict our presentation to this special case.

In order to put the 3-dimensional KS-regularization {cf. 1.2.1) into operation
and to investigate its numerical behaviour, we choose a circular trajJectory with

orbital plane in general position.

The gravitational parameter M was set equal to 4 in (4,51) and the radius
of the orbit is 1 .

Exact initial conditions:

Xe = .36235 77544 9 | X, = -.50358 28673 1
X, = .93203 90859 7 X, = .19578 27303 0 (4,1)
Xy = o, Xy = .84147 09848 0 .

The corresponding circular orbit has an inclination wlth respect to the x,,X, -
plane measuring roughly 57°.

From the above conditions, we derive the following formulae for the motion of

our particle:

X, = .36235 77544 O # cost - .50358 28673 1 * sint
X2 = .93203 90859 7 ®* cost + .19578 27303 O # sint (4,2)
Xy = 84147 09848 0 # sint

t is the physical time.

Furthermore, we have for the radial distance r and the true anomaly ¢ the

following exact expressions:
r = 4 ' (4,3)

p == t . (434)

4,2 Numerical integration of the equations of motion

A) Classical equations of Kepler motion. Our system of differential equations 1s

composed of 6 first order equations which read
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where
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1

(4,5)

(4,6)

We denote the solution of (4,5) obtained with numerical integration by:

dxi 1 (i= 1'213)

initial conditions are given in (4,1).

B) Regularized equations of motion. The four parametric coordinates U, Uy, Ug U,

and the physical time t

equations which read

(1,74)(1,83)

(1,57)(1,45)

(j=4.2,34)
Vj - -Tuj

t' = guj’“

)

are computed from a system of 9 first order differential

(4,7)

(4,8)

Here the independent variable is the fictitious time s ; after numerical inte-

gration the physical coordinates are obtained from

(1,44)

and the velocities from

%, =

(1,98) X, =
X, =

with

(1,45)

We denote the numerical
integration by:

for the velocities:

and for the physical time:

2 2 2 2
Xg = Uy =My —uy U,
Uuy)

2 (u,us + uu,)

X2 = 2 (uu, -
X3

4 U U '
(u.u, - UpUs - Uy uuy)

t ' i i
(ugus + upu) = uwyuy - ugud)

=N sd N

t ] '
(Ua Uy + UzUy F Uy Uy + Uy uz)

L3
r = Zu}

=4

value of the above coordinates

reg X

.

rchi

t

req

(4,9)

(4,10)

(4,11)

obtained by numerical
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It should be emphasized that throughout integration we constantly make use of

2
the exact initial value w = % in the equations of motion (1,74).

The initial conditions for the parametric coordinates and velocities are taken
from the left-hand version of (1,47) by choosing u, =0 and from (1,48).

Thus, we have at our disposal the numerical values of

- the solution 4% for the classical case,

- the solution g% ,cﬁ for the regularized case,

- and the solution X which denotes values of coordinates of the exact analyt-

ical solution (4,2).

Comparison of numerical solutions with the exact analytical solution was es-
tablished for the distance r and true anomaly ¢, in both classical and regular-

ized cases. We computed v and ¢ from the Cartesian coordinates (X and
"sx; respectively by projecting the polnt x; onto the orbital plane of the ex-
act solution. The results are denoted in the sequel by

al v d® i reg” 1 reg¥ respectively.

denote the exact values (4,3),(4,4).

Furthermore r

ex¥ 1 e

Numerical errors can now be defined as follows:
for the classical solutions

dAr(t) = r(t) - ) (4,12)
clA‘f(t) = ¥ (t) - ex‘f(t) ’ (4,13)

for the solutlon of the regularized system:

...gAr (ugt) ol ug"(s) - ..x"(yggt) ) (4,14)

regA'f(rtgt) = ,eq 9(5) - ex‘?('tst) 1 (4,15)
i.e. regularized coordinates veg ¥ and reg P 2TE opposed to values _r and _ ¢
of the exact solution taken at the computed time ,¢9t .

We also determined the influence of numerical errors on the most important of

all elements of the orbit, namely the semi-major axis a; values of ,a, reg @
yleld the followlng errors:
clAa(t) - cla(t) - 4 ) (4,16)
vag D Aregt) = ,eq@(eqt) = 1 . (4,17)

They were computed, during integration, for various values of time, from the corre-
sponding values of the physical coordinates x; and velocities *& .
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All experiments were performed on a Control Data 1604-A computer using float-

ing point arithmetic with ~44 decimal places and symmetric rounding.

The differential equations were integrated with the standard Runge-Kutta meth-~
od of order 4.

4.3 Description and results of the numerical experiments

In the following figures, the unit on the time axis corresponds to one period
of revolution of the exact Kepler orbit, i.e. 2T = 6,28 units of t .

We describe two experiments:

A) Long term experiment. For both the classical and the regularized case, we choose

a step size such that integration of one whole revolution is accomplished in
10 * 2T = 63 integration steps.

This relatively large value of the step size ( = 0.1 ) clearly brings trunca-

tion errors to the foreground so that round-off errors are imperceptible.

Fig. 4.1 represents the error behaviour of r and a; the scale factor im-
posed by the errors in the classical case is such that in the regularized case the
error curve for v can hardly be distinguished from the error curve belonging
to a,

Fig. 4.2 shows errors of the true anomaly.

B) Short term experiment. In contrast to experiment A), experiment B) is primarily

designed for throwing some light on the behaviour of round-off errors.

This was done by choosing a smaller mesh which corresponds to 50 # 2T &~ 314

steps per revolution (step size = 0.02).
Here again results have been plotted in Fig. 4.3 and Fig. 4.4.

In Fig. 4.4, the curve Ay requires some explanations; the main component

reg
of this error is due to the propagation of round-off errors in the integration of

the physical time in equation (4,8).

Integration of formula (4,8) with the above mentioned Runge-Kutta method is
equivalent to Simpson's rule; for two consecutive values t, and t,,, , we have a

relation of the type

regtn+4 = rcgtn + h-Fls) (4,18)
where F(s) is a function determined by the numerical method of integration.
Looking at the right-hand sides of (4,8) and (4,11) we see that, on account of or-
bital stability of Kepler motion, the value of F(s) remains very close to 41 and
is a smooth function of s . At each integration step the addition at the right-hand
side of (4,18) is rounded thus creating a cumulative propagation of round-off

errors and thereby erroneous values of ,egt .
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Fig. 4.1. Long term experiment: Total error in distance and semi-major axis.
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Fig. 4.2. Long term experiment: Total error in true anomaly.
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However it should be emphasized that such a propagation of round-off errors
while integrating a perturbed Kepler motion, is expected only if the physical time
is integrated with formula (1,94) of the second procedure {cf. 1.3.2). This propa-
gation no longer exists if physical time is integrated with the companion procedure

of section 1.3.3, since only the perturbation of time 1s numerically integrated.

4,4 Conclusions

- The above experiments present numerical integrations of the coordinates X;
and consequently do not test the methods developed in chapter 1 and chapter 2 which

only require integration of the perturbations of elements x; , ﬁj .

- However 1t has become evident that regularized methods are significantly more
stable than classical ones, during numerical integration; experiments have corrobo-
rated the theoretical considerations of section 1.7.1 and they show that the advan-

tage of regularization outlined there is more pronounced than expected.

- Further studies (not published here) concerning elliptical orbits show that
this behaviour also occurs in such cases; for higher values of the eccentricity,
this beneficent tendency becomes even more significant.

- Theoretical investigations on such error behaviours are subject of a forthcom-
ing thesis 1in which separation of truncation and round-off errors, as well as per-
turbed motion will be discussed.
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